Non-uniform complexity via non-wellfounded proofs

CSL 2023

Warsaw, 15 February 2023

1

Gianluca Curzi Anupam Das !

LUniversity of Birmingham, UK

Introduction

Follow up of a previous work [Curzi&Das 2022]:

» Cyclic proof system CB characterising FP (functions computable in polytime)

» CB is a circular version of B, an algebra of functions based on the principles of
implicit complexity [Bellantoni&Cook 92]

1/13

Introduction

Follow up of a previous work [Curzi&Das 2022]:

» Cyclic proof system CB characterising FP (functions computable in polytime)

» CB is a circular version of B, an algebra of functions based on the principles of
implicit complexity [Bellantoni&Cook 92]

» Alternative approach to implicit complexity: Cyclic Implicit Complexity

1/13

Introduction

Follow up of a previous work [Curzi&Das 2022]:

» Cyclic proof system CB characterising FP (functions computable in polytime)

» CB is a circular version of B, an algebra of functions based on the principles of
implicit complexity [Bellantoni&Cook 92]

» Alternative approach to implicit complexity: Cyclic Implicit Complexity

This talk in a nutshell:

» Cyclic proofs are special non-wellfounded proofs admitting finite presentation

» Finite presentability &~ computational uniformity

1/13

Introduction

Follow up of a previous work [Curzi&Das 2022]:

» Cyclic proof system CB characterising FP (functions computable in polytime)

» CB is a circular version of B, an algebra of functions based on the principles of
implicit complexity [Bellantoni&Cook 92]

» Alternative approach to implicit complexity: Cyclic Implicit Complexity

This talk in a nutshell:

» Cyclic proofs are special non-wellfounded proofs admitting finite presentation
» Finite presentability &~ computational uniformity

» Relaxing finite presentabilty ~~ relaxing uniformity
>

Non-wellfounded proof system nuB for FP/poly (functions computable in
non-uniform polytime)

1/13

@ Cyclic Proofs and Computation

Non-wellfounded proofs

Non-wellfounded proofs = infinitary generalisations of the notion of proof

r=A

2/13

Non-wellfounded proofs

Non-wellfounded proofs = infinitary generalisations of the notion of proof

r=A

Progressiveness condition = global condition to guarantee consistency

2/13

Cyclic proofs
Cyclic proofs = regular non-wellfounded proofs

Regular tree = only finitely many distinct subtrees

3/13

Cyclic proofs
Cyclic proofs = regular non-wellfounded proofs

Regular tree = only finitely many distinct subtrees

Cyclic proofs admit a finite, “circular” presentation:

r=A
: —>
r=A

3/13

Cyclic proofs as programs

m Only one formula N corresponding to N

m Inference rules correspond to algorithmic instructions

4/13

Cyclic proofs as programs

m Only one formula N corresponding to N
m Inference rules correspond to algorithmic instructions

m The cyclic proof

corresponds to a program computing a function

fp:Nx...xN—=> N
————

n

4/13

An example
Example: primitive recursion
£0,y) = &)

f(x+1,5) = h(x,7,f(x,7))

5/13

An example

Example: primitive recursion

f(0,y) = g(¥)

fx+1,7) = h(x, 7, f(x,7))

Computational meaning:

» regularity = uniformity, computability criterion

5/13

An example

Example: primitive recursion

f(0,5) = &)

(G+1).9)

h(x, 7, £(%9, 7))

Computational meaning:
» regularity = uniformity, computability criterion

» progressiveness = totality, termination criterion

5/13

e Cyclic Implicit Complexity Part |: uniform computation

|CC and safe recursion

m Implicit computational complexity (ICC) = characterise complexity classes by
means of languages/calculi without explicit reference to machine models or
external resource bounds.

m Function algebra B characterising FP in the style of ICC [Bellantoni&Cook 92].

m Function arguments partitioned into normal and safe:

f(Xl','“aXn; yla"'aym)

6/13

|CC and safe recursion

m Implicit computational complexity (ICC) = characterise complexity classes by
means of languages/calculi without explicit reference to machine models or
external resource bounds.

m Function algebra B characterising FP in the style of ICC [Bellantoni&Cook 92].

m Function arguments partitioned into normal and safe:
f(X17' <5 Xng Y1y .- '7ym)
m Safe recursion: o .
f(0.%,¥) = g(%¥)
F(x +1.%:7) = h(x. % 7, F(x,%: 7))

Idea. Recursive calls only in the safe zone:

6/13

Cyclic proofs as polytime programs

Example: safe recursion [Bellantoni&Cook, 1992]

cond

Idea: TIN vs N reflects normal vs safe distinction of function arguments

7/13

Cyclic proofs as polytime programs

Example: safe recursion [Bellantoni&Cook, 1992]

cond

Idea: TIN vs N reflects normal vs safe distinction of function arguments

7/13

Cyclic proofs as polytime programs

Example: safe recursion [Bellantoni&Cook, 1992]

f(0,%;¥) = g(x:¥)

f(@, %:7) = h(x, % 5, F(®. % 7))

Idea: [ON vs N reflects normal vs safe distinction of function arguments

7/13

Characterising the polynomial time (FP)

Cyclic proof system CB = regular and progressing non-wellfounded proofs
satisfy the following global proof-theoretic conditions:

> Safety:

® maintain globally the CJN vs N distinction

® only safe recursion schemes are representable

8/13

Characterising the polynomial time (FP)
Cyclic proof system CB = regular and progressing non-wellfounded proofs
satisfy the following global proof-theoretic conditions:

> Safety:

® maintain globally the CJN vs N distinction

® only safe recursion schemes are representable
» |Left-leaning: prevents nested safe recursion:
exp(0iy) =y +1

exp(x + 1; y) = exp(x; exp(x; y))

source of exponential blow up!

8/13

Characterising the polynomial time (FP)
Cyclic proof system CB = regular and progressing non-wellfounded proofs
satisfy the following global proof-theoretic conditions:

> Safety:

® maintain globally the CJN vs N distinction

® only safe recursion schemes are representable
» |Left-leaning: prevents nested safe recursion:
exp(0iy) =y +1

exp(x + 1; y) = exp(x; exp(x; y))

source of exponential blow up!

Theorem [Curzi&Das, 2022]:
» the functions representable in CB are exactly those in FP.

» the functions representable in CB without the left-leaning condition are
exactly those in FELEMENTARY.

8/13

e Cyclic Implicit Complexity Part Il: non-uniform computation

Non-uniform polynomial time (FP /poly)

FP/poly = class of functions computable in non-uniform polynomial time

Theorem: f € FP/poly iff there are polynomial size circuits computing f.

9/13

Non-uniform polynomial time (FP /poly)

FP/poly = class of functions computable in non-uniform polynomial time
Theorem: f € FP/poly iff there are polynomial size circuits computing f.

FP(R) = class of functions computable in polynomial time by a Turing
machine “querying bits of real numbers”

Theorem [Folklore]: FP/poly = FP(R).

9/13

Non-wellfounded proofs as non-uniform polytime programs

Cyclic proofs = regular non-wellfounded proofs

regularity =~ computability, uniformity

10/13

Non-wellfounded proofs as non-uniform polytime programs

Cyclic proofs = regular non-wellfounded proofs

regularity =~ computability, uniformity‘

Idea: relaxing regularity to represent real numbers and characterise FP(R)

weak regularity =~ computability 4+ query on bits of real numbers‘

10/13

Non-wellfounded proofs as non-uniform polytime programs

Cyclic proofs = regular non-wellfounded proofs

regularity =~ computability, uniformity‘

Idea: relaxing regularity to represent real numbers and characterise FP(R)

weak regularity =~ computability 4+ query on bits of real numbers‘

... but since FP(R) = FP/poly then:

’weak regularity = non-uniformity

10/13

Weak regularity

Regular proof = finitely many distinct subproofs.

11/13

Weak regularity

Weakly regular proof = finitely many distinct subproofs containing the
inference rules

11/13

Weak regularity

Weakly regular proof = finitely many distinct subproofs containing the
inference rules

Example:

I: cond;

=N ON = N

D = cond
Y
cond
= N ON = N
cond
ON=N

Idea: weak regularity implies D1, D5, ..., D,,... are finitely many distinct.

11/13

Weak regularity

Weakly regular proof = finitely many distinct subproofs containing the
inference rules

Example:

: cond

W =N ON= N
r = cond
=N

cond

= N ON= N
ON = N

cond

...which encodes a real number r = (r(0),r(1),...,r(n),...)

11/13

Characterising FP /poly

Non-wellfounded proof system nuB = weakly regular version of CB.

Theorem [Curzi&Das 2023]: The functions representable in nuB are exactly
those in FP/poly.

12/13

Characterising FP /poly

Non-wellfounded proof system nuB = weakly regular version of CB.

Theorem [Curzi&Das 2023]: The functions representable in nuB are exactly
those in FP/poly.

Idea of the proof: weak regularity allows a decomposition result

<7

On = N On = N

nuB = CB(R) = FP(R) = FP/poly

12/13

Conclusion and future directions

m Ongoing work: non-wellfounded approaches to FP/poly in the setting of
linear logic.

13/13

Conclusion and future directions

m Ongoing work: non-wellfounded approaches to FP/poly in the setting of
linear logic.

m Future work: find proof-theoretic restrictions on nuB to characterise BPP
(bounded-error probabilistic polynomial time).

13/13

Thank you!
Questions?

Appendix

@ Non-uniform complexity classes

Non-uniform complexity classes
m FP = class of functions computable in polynomial time on a Turing machine.

m FP/poly is an extension of FP that intuitively has access to a ‘small’ amount
of advice, determined only by the length of the input.

m FP/poly = class of functions f(X) for which there exists some strings
az € {0,1}* and a function f'(x, X) € FP with:
» |ag| is polynomial in 7.
> f(X) = f'(az,X).
m Note, in particular, that FP/poly admits undecidable problems. E.g. the
function f(x) =1 just if |x| is the code of a halting Turing machine (and 0

otherwise) is in FP/poly. Indeed, the point of the class FP/poly is to rather
characterise a more non-uniform notion of computation.

m Theorem: f(X) € FP/poly iff there are poly-size circuits computing f(X).

1/10

m The class FP(R) consists of just the functions computable in polynomial time
by a Turing machine with access to oracles from:

R:={f(x): N={0,1} | Ix[= ly| = f(x)=£(y)}

m Note that the notation R is suggestive here, since its elements are essentially
maps from lengths/positions to Booleans, and so may be identified with
Boolean streams.

m Theorem [Folklore]: FP/poly = FP(R).

2/10

© The non-wellfounded proof system nuB

Rules for the non-wellfounded proof system nuB

; =N ,N=B = 0ON ON,I =B

i cut, cut;

N=N " =B . =B

= B = B LA BT = C ,N= A =N

WN

w e O O,
N=B °"ON,f =B [,BAI=C ONI=A - ON

= A = A =N ON,[,N=N ON,I,N=N
0 1 S s srec
=N =N 'T=A T[=A ON,T = N
=N [N=N [[N=N =N ON, =N ON T =N
cond cond
" N= N . ON,[= N
=N I,N=N =N ON,l =N

|cond| |cond|

,N=N ON =N

3/10

Semantics of non-wellfounded proofs for nuB

ie{0,1}
TSN

Si
N= N

o e

=N I,N=A
= A

o Ny

=0N ON,l = A
= A

o Ny Ny

=N ONT,=N ONT =N

cut

cut

condn ON,T = N
Fr=N ON,T =N
|cond|o

ON,T = N

fp(;):=1i

fp(; x) :=six

(%) = fp, (X: ¥, fpy (X V)

fp(%:¥) = fp, (fpy (X ¥), % ¥)

(0, X:y) = fp(XiY)
fo(sox,X;¥) = fp (x, %)
fo(six, %1 y) = fp,(x,%¥)

f’D(Or)_(.vy ng()?;y)

)
o (six, X; ¥) D, (x, X; ¥)

4/10

@ Proof-theoretic conditions defining nuB

Progressiveness

m Example. A cyclic proof D representing a partial function:

so cuty

N= N ON,N = N
cuty
ON,N = N
fo(x;y) = fp(x;soy)

m Progressive proof = every infinite branch contains a [-thread with infinitely
many principal formulas of the rule condp.

m Progressiveness ~ totality

5/10

Safety condition

m Example. Modalities are not enough to enforce stratification in our setting.
E.g. cyclic progressing proof D for primitive recursion (on notation):

A

<G7 ON,T = N ON,ILON= N ON,T = N ON,ILON= N
t t
r=n 0 ON,T = N 0 ON,T = N

ON,T = N

fo(six, %) = fp, (x, X, f(x,X);)

m Safe proof = any infinite branch crosses finitely many cutq rules.

m Safety condition rules out non-safe recursion schemes.

6/10

Safety condition induces a simpler [-thread structure

=B N =A r=0On On, T = B =N Onv,r =N ONT =N
w cut, cond
UOnr=s "GN = A o =B o ON, T = N

7/10

Left-leaning condition

m Safety condition is not enough! We can express nested safe recursion.

m Example. A cyclic progressing safe proof for the exponential function
Ix]
exp(x)(y) =22 -y

cond ————— cond cond cond —————
UOv,v=nw UOv,n=n USv,vn=n UOnv,vn=n

cutpy cutpy

N= N ON, N = N ON, N = N

ON,N = N

exp(0; y) = soy
exp(six; y) = exp(x;exp(x;y))

m Left-leaning proof = any branch goes right at a cuty rule only finitely often.

8/10

Hofmann's type system SLR [Hofmann 97]

m Two function spaces: JA — B (modal) and A — B (linear).

m Safe linear recursion operator (with A O-free):

reca: ON — (ON - A—-A) - A= A
—_———

X h g

where f(x) = reca(x, h, g) means:

f(0) = g
f(sox) = h(x,f(x))
f(six) = h(x, f(x))

m terms ¢ : (ON)" — N™ — N represent exactly the functions in FP.

9/10

Nesting and higher-order recursion

m Nested recursion in SLR if higher-order types are not handled linearly:

A = N—=>N
& = So tA
h = Mx:ONXu:N—= Ny :Nu(uy) :ON—-A = A A

exp(x; y) = reca(x, h,g)(y)

m Takeaway. Type n cyclic proofs can represent type n+1 recursion [Das 21].

m Left-leaning is a linearity condition: it prevents duplication of recursive calls,
and hence their nesting.

10/10

	Cyclic Proofs and Computation
	Cyclic Implicit Complexity Part I: uniform computation
	Cyclic Implicit Complexity Part II: non-uniform computation
	Appendix
	Appendix
	Non-uniform complexity classes
	The non-wellfounded proof system nuB
	Proof-theoretic conditions defining nuB

