
Non-uniform complexity via non-wellfounded proofs

CSL 2023

Warsaw, 15 February 2023

Gianluca Curzi 1 Anupam Das 1

1University of Birmingham, UK



Introduction

Follow up of a previous work [Curzi&Das 2022]:

▶ Cyclic proof system CB characterising FP (functions computable in polytime)
▶ CB is a circular version of B, an algebra of functions based on the principles of

implicit complexity [Bellantoni&Cook 92]
▶ Alternative approach to implicit complexity: Cyclic Implicit Complexity

This talk in a nutshell:

▶ Cyclic proofs are special non-wellfounded proofs admitting finite presentation
▶ Finite presentability ≈ computational uniformity
▶ Relaxing finite presentabilty ⇝ relaxing uniformity
▶ Non-wellfounded proof system nuB for FP/poly (functions computable in

non-uniform polytime)
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1 Cyclic Proofs and Computation

2 Cyclic Implicit Complexity Part I: uniform computation

3 Cyclic Implicit Complexity Part II: non-uniform computation



Non-wellfounded proofs

Non-wellfounded proofs = infinitary generalisations of the notion of proof

ax . . . ax

rules

Γ ⇒ A

vs
. . .

. . . . . .

rules

Γ′ ⇒ A′ . . .

rules

Γ ⇒ A

Progressiveness condition = global condition to guarantee consistency

2 / 13



Non-wellfounded proofs

Non-wellfounded proofs = infinitary generalisations of the notion of proof

ax . . . ax

rules

Γ ⇒ A

vs
. . .

. . . . . .

rules

Γ′ ⇒ A′ . . .

rules

Γ ⇒ A

Progressiveness condition = global condition to guarantee consistency

2 / 13



Cyclic proofs

Cyclic proofs = regular non-wellfounded proofs

Regular tree = only finitely many distinct subtrees

Cyclic proofs admit a finite, “circular” presentation:

. . .

. . . . . .

D

Γ ⇒ A . . .

D

Γ ⇒ A
.
.
.

→

. . . Γ⇒ A . . .

D

Γ⇒ A
.
.
.
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Cyclic proofs as programs

Only one formula N corresponding to N

Inference rules correspond to algorithmic instructions

The cyclic proof

D

N, . . . , N︸ ︷︷ ︸
n

⇒ N

corresponds to a program computing a function

fD : N × . . . × N︸ ︷︷ ︸
n

→ N
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An example
Example: primitive recursion

f (0, y⃗) = g(y⃗)

f (x + 1, y⃗) = h(x , y⃗ , f (x , y⃗))

g

N⃗ ⇒ N

N, N⃗ ⇒ N

h

N, N⃗, N ⇒ N
cut

N, N⃗ ⇒ N
cond

N, N⃗ ⇒ N

Computational meaning:

▶ regularity = uniformity, computability criterion
▶ progressiveness = totality, termination criterion
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ICC and safe recursion

Implicit computational complexity (ICC) = characterise complexity classes by
means of languages/calculi without explicit reference to machine models or
external resource bounds.

Function algebra B characterising FP in the style of ICC [Bellantoni&Cook 92].

Function arguments partitioned into normal and safe:

f (x1, . . . , xn ; y1, . . . , ym)

Safe recursion:
f (0, x⃗ ; y⃗) = g(x⃗ ; y⃗)

f (x + 1, x⃗ ; y⃗) = h(x , x⃗ ; y⃗ , f (x , x⃗ ; y⃗))

Idea. Recursive calls only in the safe zone:
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Cyclic proofs as polytime programs

Example: safe recursion [Bellantoni&Cook, 1992]

f (0, x⃗ ; y⃗) = g(x⃗ ; y⃗)
f (x + 1, x⃗ ; y⃗) = h(x , x⃗ ; y⃗ , f (x , x⃗ ; y⃗))

g

#    »
□N, N⃗ ⇒ N

□N,
#    »
□N, N⃗ ⇒ N

h

N,
#    »
□N, N⃗, N ⇒ N

cut
□N,

#    »
□N, N⃗ ⇒ N

cond
□N,

#    »
□N, N⃗ ⇒ N

Idea: □N vs N reflects normal vs safe distinction of function arguments
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Characterising the polynomial time (FP)
Cyclic proof system CB = regular and progressing non-wellfounded proofs
satisfy the following global proof-theoretic conditions:
▶ Safety:

• maintain globally the □N vs N distinction
• only safe recursion schemes are representable

▶ Left-leaning: prevents nested safe recursion:

exp(0; y) = y + 1

exp(x + 1; y) = exp(x ; exp(x ; y))

source of exponential blow up!

Theorem [Curzi&Das, 2022]:
▶ the functions representable in CB are exactly those in FP.
▶ the functions representable in CB without the left-leaning condition are

exactly those in FELEMENTARY.
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Non-uniform polynomial time (FP/poly)

FP/poly = class of functions computable in non-uniform polynomial time

Theorem: f ∈ FP/poly iff there are polynomial size circuits computing f .

FP(R) = class of functions computable in polynomial time by a Turing
machine “querying bits of real numbers”

Theorem [Folklore]: FP/poly = FP(R).
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Non-wellfounded proofs as non-uniform polytime programs
Cyclic proofs = regular non-wellfounded proofs

regularity ≈ computability , uniformity

Idea: relaxing regularity to represent real numbers and characterise FP(R)

weak regularity ≈ computability + query on bits of real numbers

. . . but since FP(R) = FP/poly then:

weak regularity ≈ non-uniformity
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Weak regularity

Regular proof = finitely many distinct subproofs.

Example:

D :=
D1

⇒ N

D2

⇒ N

Dn

⇒ N

...
cond
□N ⇒ N

cond
...

cond
□N ⇒ N

cond
□N ⇒ N

Idea: weak regularity implies D1, D2, . . . , Dn, . . . are finitely many distinct.
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Weak regularity

Weakly regular proof = finitely many distinct subproofs containing the
inference rules . . . .

Example:

r :=
r(0)

⇒ N

r(1)

⇒ N

r(n)

⇒ N

...
cond
□N ⇒ N

cond
...

cond
□N ⇒ N

cond
□N ⇒ N

. . . which encodes a real number r = ⟨r(0), r(1), . . . , r(n), . . .⟩

11 / 13



Characterising FP/poly
Non-wellfounded proof system nuB = weakly regular version of CB.

Theorem [Curzi&Das 2023]: The functions representable in nuB are exactly
those in FP/poly.

Idea of the proof: weak regularity allows a decomposition result

. . . . . .

.

.

.

r1

□N ⇒ N

.

.

.

rn

□N ⇒ N

. . .

nuB = CB(R) = FP(R) = FP/poly
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Conclusion and future directions

Ongoing work: non-wellfounded approaches to FP/poly in the setting of
linear logic.

Future work: find proof-theoretic restrictions on nuB to characterise BPP
(bounded-error probabilistic polynomial time).
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Thank you!
Questions?



Appendix



4 Non-uniform complexity classes

5 The non-wellfounded proof system nuB

6 Proof-theoretic conditions defining nuB



Non-uniform complexity classes

FP = class of functions computable in polynomial time on a Turing machine.

FP/poly is an extension of FP that intuitively has access to a ‘small’ amount
of advice, determined only by the length of the input.

FP/poly = class of functions f (x⃗) for which there exists some strings
αn⃗ ∈ {0, 1}∗ and a function f ′(x , x⃗) ∈ FP with:
▶ |αn⃗| is polynomial in n⃗.
▶ f (x⃗) = f ′(α|⃗x|, x⃗).

Note, in particular, that FP/poly admits undecidable problems. E.g. the
function f (x) = 1 just if |x | is the code of a halting Turing machine (and 0
otherwise) is in FP/poly. Indeed, the point of the class FP/poly is to rather
characterise a more non-uniform notion of computation.

Theorem: f (x⃗) ∈ FP/poly iff there are poly-size circuits computing f (x⃗).

1 / 10



The class FP(R) consists of just the functions computable in polynomial time
by a Turing machine with access to oracles from:

R := {f (x) : N → {0, 1} | |x | = |y | =⇒ f (x) = f (y)}

Note that the notation R is suggestive here, since its elements are essentially
maps from lengths/positions to Booleans, and so may be identified with
Boolean streams.

Theorem [Folklore]: FP/poly = FP(R).

2 / 10



4 Non-uniform complexity classes
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6 Proof-theoretic conditions defining nuB



Rules for the non-wellfounded proof system nuB

id
N ⇒ N

Γ ⇒ N Γ, N ⇒ B
cutN Γ ⇒ B

Γ ⇒ □N □N, Γ ⇒ B
cut□ Γ ⇒ B

Γ ⇒ B
wN Γ, N ⇒ B

Γ ⇒ B
w□
□N, Γ ⇒ B

Γ, A, B, Γ′ ⇒ C
e
Γ, B, A, Γ′ ⇒ C

Γ, N ⇒ A
□l
□N, Γ ⇒ A

□Γ ⇒ N
□r
□Γ ⇒ □N

0
⇒ N

1
⇒ N

Γ ⇒ A
s0

Γ ⇒ A
Γ ⇒ A

s1
Γ ⇒ A

Γ ⇒ N □N, Γ, N ⇒ N □N, Γ, N ⇒ N
srec

□N, Γ ⇒ N

Γ ⇒ N Γ, N ⇒ N Γ, N ⇒ N
condN Γ, N ⇒ N

Γ ⇒ N □N, Γ ⇒ N □N, Γ ⇒ N
cond□

□N, Γ ⇒ N

Γ ⇒ N Γ, N ⇒ N
|cond|N Γ, N ⇒ N

Γ ⇒ N □N, Γ ⇒ N
|cond|□

□N, Γ ⇒ N
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Semantics of non-wellfounded proofs for nuB
i ∈ {0, 1}

i
⇒ N

fD(; ) := i

si N ⇒ N
fD(; x) := si x

D0

Γ ⇒ N
D1

Γ, N ⇒ A
cut

Γ ⇒ A

fD(x⃗ ; y⃗) := fD1 (x⃗ ; y⃗ , fD0 (x⃗ ; y⃗))

D0

Γ ⇒ □N
D1

□N, Γ ⇒ A
cut□ Γ ⇒ A

fD(x⃗ ; y⃗) := fD1 (fD0 (x⃗ ; y⃗), x⃗ ; y⃗)

D0

Γ ⇒ N
D1

□N, Γ, ⇒ N
D2

□N, Γ ⇒ N
cond□ □N, Γ ⇒ N

fD(0, x⃗ ; y⃗) := fD0 (x⃗ ; y⃗)
fD(s0x , x⃗ ; y⃗) := fD1 (x , x⃗ ; y⃗)
fD(s1x , x⃗ ; y⃗) := fD2 (x , x⃗ ; y⃗)

D0

Γ ⇒ N
D2

□N, Γ ⇒ N
|cond|□ □N, Γ ⇒ N

fD(0, x⃗ ; y⃗) := fD0 (x⃗ ; y⃗)
fD(si x , x⃗ ; y⃗) := fD2 (x , x⃗ ; y⃗)

4 / 10



4 Non-uniform complexity classes

5 The non-wellfounded proof system nuB

6 Proof-theoretic conditions defining nuB



Progressiveness

Example. A cyclic proof D representing a partial function:

s0 N ⇒ N
cutN
□N, N ⇒ N

cutN
□N, N ⇒ N

fD(x ; y) := fD(x ; s0y)

Progressive proof = every infinite branch contains a □-thread with infinitely
many principal formulas of the rule cond□.

Progressiveness ∼ totality

5 / 10



Safety condition

Example. Modalities are not enough to enforce stratification in our setting.
E.g. cyclic progressing proof D for primitive recursion (on notation):

D0

Γ ⇒ N
□N, Γ ⇒ N

D1

□N, Γ,□N ⇒ N
cut□

□N, Γ ⇒ N
□N, Γ ⇒ N

D2

□N, Γ,□N ⇒ N
cut□

□N, Γ ⇒ N
cond□

□N, Γ ⇒ N

fD(0, x⃗ ; ) = fD0 (x⃗ ; )
fD(six , x⃗ ; ) = fD1 (x , x⃗ , f (x , x⃗); )

Safe proof = any infinite branch crosses finitely many cut□ rules.

Safety condition rules out non-safe recursion schemes.

6 / 10



Safety condition induces a simpler □-thread structure

. . . □N, . . . ,□N, N⃗ ⊢ N . .
.

□N, . . . ,□N, N⃗ ⊢ N
...

Γ ⇒ B
w□ □N, Γ ⇒ B

Γ, N ⇒ A
□l □N, Γ ⇒ A

Γ ⇒ □N □N, Γ ⇒ B
cut□ Γ ⇒ B

Γ ⇒ N □N, Γ ⇒ N □N, Γ ⇒ N
cond□ □N, Γ ⇒ N

7 / 10



Left-leaning condition

Safety condition is not enough! We can express nested safe recursion.

Example. A cyclic progressing safe proof for the exponential function
exp(x)(y) = 22|x| · y :

s0 N ⇒ N

cond□ □N, N ⇒ N
cond□ □N, N ⇒ N

cutN □N, N ⇒ N

cond□ □N, N ⇒ N
cond□ □N, N ⇒ N

cutN □N, N ⇒ N
cond□ □N, N ⇒ N

exp(0; y) = s0y
exp(si x ; y) = exp(x ; exp(x ; y))

Left-leaning proof = any branch goes right at a cutN rule only finitely often.

8 / 10



Hofmann’s type system SLR [Hofmann 97]

Two function spaces: □A → B (modal) and A⊸ B (linear).

Safe linear recursion operator (with A □-free):

recA : □N → (□N → A⊸A)︸ ︷︷ ︸ → A → A

x h g

where f (x) = recA(x , h, g) means:

f (0) = g
f (s0x) = h(x , f (x))
f (s1x) = h(x , f (x))

terms t : (□N)n → Nm ⊸N represent exactly the functions in FP.
9 / 10



Nesting and higher-order recursion

Nested recursion in SLR if higher-order types are not handled linearly:

A = N → N
g = s0 : A
h = λx : □N.λu : N → N.λy : N.u(uy) : □N → A → A → A

exp(x ; y) = recA(x , h, g)(y)

Takeaway. Type n cyclic proofs can represent type n+1 recursion [Das 21].

Left-leaning is a linearity condition: it prevents duplication of recursive calls,
and hence their nesting.

10 / 10
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