Cyclic Implicit Complexity

LICS 2022, Haifa, Israel 2022

Gianluca Curzi

University of Birmingham

joint work with Anupam Das (University of Birmingham)

What is this presentation about?

» Goal:

e circular proof systems characterising FPTIME and FELEMENTARY...

o ...in the style of implicit computational complexity (ICC)

> Some motivations:
e new topic, not much about complexity-theoretic aspects of circular reasoning;
e circular proofs subsume several recursion schemes;

o hard to tame complexity: introduce cyclic proof-theoretic conditions that

identify computational and complexity-theoretic notions (uniformity, totality,
stratification, ...)

ICC and safe recursion
» Function algebra B characterising FPTIME [Bellantoni and Cook 92].

» Function arguments partitioned into normal and safe:

F(X1s ooy X Vise oy Ym)

» Safe recursion on notation:
£(0,%;7) = g(X;¥)
f(SoX,)?;)7) = hO(X«,)?; }77 f(X,)?; }7))
f(six, X y) = m(x, X, ¥, f(x,X;¥))

Idea. Recursive calls only in the safe zone:

CIRCULAR PROOF SYSTEMS BASED ON SAFE RECURSION

Proof theoretic formulation of B

» Formulas A, B, C € {N,0ON} and contexts [, A = Ay,... A,
» Sequents DN, N = N represent functions f(X; y)

» Inference rules for initial functions and closure operations of B:

=N [,N=B =0N 0ON,I =B
id cut cut
N = N N =B = [=B
MLN=A ON,...,0N = N
O O, 0 s s
"ON,T = A ON,...,ON = ON N ‘'N=N 'N=N
r=N ILN=N [,N=N Fr=N ON=N ONIT =N
cond cond
" N=N . ON,T = N

=N ON,I,N=N ONI,N=N
ON T =N

srec

Circular proofs

» Circular proofs = non-wellfounded proofs with finitely many distinct subproofs

» Circular proofs admit a finite, “cyclic” presentation

fp(0;y) =y
fo(sox; y) = so(fo(x; y))
fo(six; y) = si(fo(x;y))

circularity ~» computability

4/7

Progressiveness and safety

» Progressiveness condition = global criterion for termination

t
NN CUNN:(/\-/\

t
o N= N

fo(iy) = fo(isoy)

> Safety condition = global criterion enforcing stratification of data (N vs)

progressiveness ~-» extract recursion from cycles

progressiveness + safety ~~ extract safe recursion from cycles

Nesting

» Circular proof system NCB = circular proofs that are both progressing and safe

> NCB defines safe nested recursion (hence exponential functions):

cond —————
UOOnv,vn=n
ON, N = N

cond cond
UOv,n=n USv,vn=n
cutyy

cond —————
UOv,v=nw
cutyy

ON, N =N
On, N =N

exp(0; y) = soy
exp(six; y) = exp(x; exp(x; y))

» Circular proof system CB = global “linearity” criterion on NCB

CB ~» no duplication of recursive calls (hence, no nesting!)

6/7

Outline of the fundamental results

NCB = FELEMENTARY
CB = FPTIME
[Wirz 99] FELEMENTARY wma
NB % NCB Translation Lemma NBC
B - Completeness CB Translation Lemma BC
[Bellantoni and Cook 92] ~~~==> FPTIME ém
safe recursion | on notation on C
unnested B BC
nested NB NBC

Thank you!
Questions?

Appendix

Semantics of non-wellfounded proofs for B

0:>N fp(;):=0

vy fo(; x) = six

(% 7) 1= Fo, (%1 7 Fog (53 7))

=N ITN=A
[= A

fo(557) = Fios (g (5 7), %1 7)

F=0N ON,IT=A
[= A
fD(Oa)_(’;y) = fDo()?;)_/')
fo(s0x. 51 7) = i, (x, %,
F=N ONT,=N ONT =N D(s0%, X1 7) Dl(j;

cond(y fD(S].Xa)?1 }7) = sz()
ON,T = N

cut

cut)

1/10

Safety condition

» Example. Modalities are not enough to enforce stratification in our setting.
E.g. circular progressing proof D for primitive recursion (on notation):

W ON,T = N ON,ILON= N ON,T = N ON,ILON= N
t t
r=n 0 ON,T = N o ON,T = N

ON,T = N

cond

p(0,X;) = fpy(X;)

fo(six, %) = fp,(x, X, f(x,X);)

2/10

Safety condition

» Example. Modalities are not enough to enforce stratification in our setting.
E.g. circular progressing proof D for primitive recursion (on notation):

o o

@7 ON,T = N ON,ILON= N ON,T = N ON,ILON= N
t t
r=n 0 ON,T = N o ON,T = N
cond
ON,T = N

p(0,X;) = fpy(X;)

fD(S,‘X,)?;) = fDl(Xf)?v f(X7)?);)

> Safe proof = any infinite branch crosses finitely many cutg rules.
» Circular proof system NCB = circular progressing safe proofs.

> Safety condition rules out non-safe recursion schemes.

2/10

Safety = simpler [)-thread structure

=B N =A r=0~v 0ON,T =B r=~N 0Onrvr=nN 0ONT=N
w cut, cond
U0n,r =B BN, = A o =B O ON, T = N

3/10

Safety = simpler [)-thread structure

=B O LN=A r=0~v 0ONT =B r=n~N OnvT=n~N ONT=N
w, cut cond
O5n,r = B BN, = A o =B O ON,T = N

3/10

Nesting condition

» Problem. NCB can express nested safe recursion.

» Example. A circular progressing safe proof for the exponential function
Ix|
exp(x)(y) = 2% -y

cond cond condy —————
OSv,n=n OSv,n=>n OOv,v=nw
N ON, N = N
=
.

s vy
cut
N ON, N = N
ON, N =N

exp(0; y) = soy
exp(six; y) = exp(x; exp(x; y))

4/10

Nesting condition

» Problem. NCB can express nested safe recursion.

» Example. A circular progressing safe proof for the exponential function
Ix|
exp(x)(y) =2%" -y

cond cond condy —————
OSv,n=n OSv,n=>n OOv,v=nw
Ut ON, N = N
N =

condy =——————

] ON, N =N
cut
N= N N ON,N = N

ON, N =N

exp(0; y) = soy
exp(six; y) = exp(x; exp(x; y))

» Left-leaning proof = any branch goes right at a cuty rule only finitely often.

» Circular proof system CB = circular progressing safe left-leaning proofs.

4/10

Hofmann'’s type system SLR [Hofmann 97]

» Two function spaces: JA — B (modal) and A — B (linear).

> Safe linear recursion operator (with A O-free):

reca: ON — (ON - A—-A) - A= A
~—_———

X h g

where f(x) = reca(x, h, g) means:

f(0) = g
f(sox) = h(x,f(x))
f(six) = h(x,f(x))

> terms t: (ON)" — N™ —o N represent exactly the functions in FPTIME.

5/10

Nesting and higher-order recursion

» Nested recursion in SLR if higher-order types are not handled linearly:

A= N—=N
& = So CA
h = M:ONXu:N—= NAy:Nu(uy) :ON—-A=-A—= A

exp(x; y) = reca(x, h,g)(y)

6/10

Nesting and higher-order recursion

» Nested recursion in SLR if higher-order types are not handled linearly:

A= N—=N
& = So CA
h = M:ONXu:N—= NAy:Nu(uy) :ON—-A=-A—= A

exp(x; y) = reca(x, h,g)(y)

> Takeaway. Type n circular proofs can represent type n+1 recursion [Das 21].

6/10

Nesting and higher-order recursion

» Nested recursion in SLR if higher-order types are not handled linearly:

A= N—=N
& = So CA
h = M:ONXu:N—= NAy:Nu(uy) :ON—-A=-A—= A

exp(x; y) = reca(x, h,g)(y)

> Takeaway. Type n circular proofs can represent type n+1 recursion [Das 21].

» Left-leaning is a linearity condition: it prevents duplication of recursive calls,
and hence their nesting.

Nested safe recursion

» Function algebra NB, which generalises B to nested safe recursion. E.g.

exp(0; y) = soy
exp(six; y) = exp(x; exp(x;y))

7/10

Nested safe recursion

» Function algebra NB, which generalises B to nested safe recursion. E.g.

exp(0; y) = soy
exp(six; y) = exp(x; exp(x;y))

» Defining nested safe recursion requires introduction of oracles:
f(3)(x;¥) € NB(3)

with oracles.

7/10

Nested safe recursion

» Function algebra NB, which generalises B to nested safe recursion. E.g.
exp(0; y) = soy
exp(six; y) = exp(x; exp(x;y))

» Defining nested safe recursion requires introduction of oracles:
f(3)(x;¥) € NB(3)

with oracles.

> Nested safe recursion: from g(X;y) € NB(2) and h(a)(x,x;y) € NB(a. 4),
define f(x,x;y) € NB(3) by:

7/10

Permutation of prefixes
> Prefix order: x C y (resp. x C y) iff the binary notation of x is a prefix
(resp. strict prefix) of y

> Example. so(s1(x)) C so(s1(so(s1x)))

8/10

Permutation of prefixes

> Prefix order: x C y (resp. x C y) iff the binary notation of x is a prefix
(resp. strict prefix) of y

> Example. so(s1(x)) C so(s1(so(s1x)))

> Permutation of prefixes: if X = (x1,...,x,) and ¥ = (x1,...,¥n):
X Cy if, for some permutation , each x; is prefix of y,(;

X C y iff X C y and some x; is a proper prefix of y(;.

8/10

Permutation of prefixes

> Prefix order: x C y (resp. x C y) iff the binary notation of x is a prefix
(resp. strict prefix) of y

> Example. so(s1(x)) C so(s1(so(s1x)))

> Permutation of prefixes: if X = (x1,...,x,) and ¥ = (x1,...,¥n):
X Cy if, for some permutation , each x; is prefix of y,(;

X C y iff X C y and some x; is a proper prefix of y(;.

» Guarded abstraction:
f(d;y) dCx
0 otherwise

(\V C %.F(V:7))(@) == {

8/10

Recursion on permutation of prefixes

» Generalise nested safe recursion to permutation of prefixes:
f(2)(X;) € NB<(2)

with 3 — a;... ., a, oracles

9/10

Recursion on permutation of prefixes
» Generalise nested safe recursion to permutation of prefixes:
f(3)(x;¥) € NB(3)
with 3 — a;... ., a, oracles

> Nested safe recursion on permutation of prefixes: from h(2)(x;y) € NB&(a, 2)
define f(X;y) € NB<(3) by:

f(X;y) = h(\d C X, \V.f(U; V))(X;Y)

a

9/10

Recursion on permutation of prefixes

» Generalise nested safe recursion to permutation of prefixes:
f(2)(X;) € NB<(2)

with 3 — a;... ., a, oracles

> Nested safe recursion on permutation of prefixes: from h(2)(x;y) € NB&(a, 2)
define f(X;y) € NB<(3) by:

f(X;y) = h(\d C X, \V.f(U; V))(X;Y)

a

» (Unnested) safe recursion on permutation of prefixes: from
h(2)(%;¥) € BS(a, 2) define f(X; y) € BS(2) by:

F(%:7) = h(\i C %, AV C y.f(ii; V))(%: 7)

a

9/10

Further results and future work

» Further results: relaxing circularity in CB (= FPTIME) ~~ FP/poly.

» Future work:
o Higher-order version of circular proof systems based on Hofmann's SLR?
o Circular proof systems to characterise other complexity classes, like FPSPACE,

ALOGTIME, NC? Hint: “parallel cut”.

rN -« =N ILN,....N=N
=N

pcut

10/10

	Appendix
	Appendix

