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» Example:

1
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» Theorem:

VM € Ag, VH € HEAD, Vne N: Probj,,4[M, H] = Prob.

spine

[M, H].
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M= N iff VC > [C[M]] = > [CIN].

> Example: Ax.(x @ X) =cxt AX.X.

> Example: A\z.z2(Q @ 1) #ext A2.(22 @ z1). If C = []A then:

(A\zz(Qa1)A -5+

where | £ \x.x, A £ \x.xx, and Q £ AA.
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Labelled Markov Chain (LMC)
> /\é‘a‘%”d as a LMC:
M —T— Ax.H
NGRS Ax.H —os HIM/x]

’

P Ax.H’

» Example: if T2 Axy.x and F £ Axy.y then:
AgQ

os|-

A

1lT69F o

(TeF)(TaF)
e
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vH ~ P {H | H ~ H} ~ ~
N — P M H Y H[M/x]

» Example: if fix £ (Ay.1 @ yy)(\y.1 @ yy) then Ax.x @ x ~ fix, since:
XX @ x —— | fix —— 1

so R £ {(\x.x @ x, fix), (fix, \’x.x ® x)} U {(N, N) | N € A%} is bisimulation.

> Example: A 1, since:

Qal T Qal T
A =2 (Qan@al) o | I = Q1) -2 |
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Probabilistic Nakajima trees [Leventis 18]

> Separation Theorem [Leventis 18]: M = N implies PT (M) = PT(N).

> Value Nakajima tree (VT):

VT(Mx1 .. XpyMy ... M) = AXL oo Xp Xl - - -2y
PT (M) PT (M) PT (Xnt1)

> Probabilistic Nakajima tree (PT):

PT(M) = p ® _p

VT(H)  VT(H)
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> Example: if H £ Ax.y(x @ y) then PT(H @ Q) is:

@
05|
AXX] ...y

0.5 @ 0.5 PT(a)
RN

AZ1 ... .X Azy ...y

PT(z1) PT(z1)
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Full abstraction

» Theorem (Full abstraction): Let M, N € Ag. We have M ~ N iff M = N.

> Soundness (~ C =¢xt): from M ~ N we have

=VC = []Ly,...,L,, C[M] ~ C[N] using [Dal Lago et al. 14]
= VC & [Ly,...,Ly, Y _[C[M]] =Y [C[N]] by definition
=M =gt N Context Lemma

> Completeness (=cxs C ~): show that = is a bisimulation, p = g?

/ \ PT(N) = / \

VT( ) VT( H’) VT (H) VT(H )

Separation Theorem [Leventis 18]: M = N implies PT (M) = PT(N).
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Failure of full abstraction in the asymmetric case

» Theorem: Probabilistic applicative similarity (3) is sound but not complete
(hence fully abstract) with respect to contextual preorder (<ext)-

> Counterexample: similar to [Crubillé&Dal Lago 2014]

M £ xx(Qal) Vs e Ax.(xQ & xI)

> A x(QBN) <yt Ax.(xQ @ xI) by Context Lemma.

> Mx.x(Q 1) Z Ax.(xQ @ xI) by contradiction.
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Probabilistic Applicative Similarity (PAS)

» Probabilistic applicative simulation: R = preorder relation such that
M L}; X C HEAD
R R

N ——— R(X)
p'zp

Ax.H Y HIM/x]
R R
A H s HIM /]

> Probabilistic applicative similarity (PAS): ~ = the “largest” simulation

I\/ILF)XQHEAD

= = =< =<

~ ~

Ax.H —s HIM/x]

N ——= 3(X) M. H Yy H[M/x]



Counterexample to the asymmetric full abstraction

xx(Qal) 2 Ax.(xQ @ x1)
e 0.5 T
T 0.5
Axx(Qal) Ax.xQ Ax.x|

0
st
S}

o
o
\
N
3
fuy
93
—
3
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