
NON-UNIFORM POLYNOMIAL TIME AND

NON-WELLFOUNDED PARSIMONIOUS PROOFS

MATTEO ACCLAVIO1, GIANLUCA CURZI2, AND GIULIO GUERRIERI3

Abstract. In this paper we investigate the complexity-theoretical aspects of
non-wellfounded proof systems inspired by parsimonious logic, a variant of lin-

ear logic where the exponential modality ! is interpreted as a constructor for

streams over finite data. Specifically, we introduce the non-wellfounded proof
systems rPLL∞2 and wrPLL∞2 , where logical consistency is maintained at a

global level by adapting a standard progressing criterion, and we provide a de-

notational semantics based on the relational model. We prove that rPLL∞2 and
wrPLL∞2 characterise, respectively, the complexity classes FP and FP/poly.
As a byproduct of our proof methods, we establish a series of characterisation
results for finitary proof systems.

1. Introduction

Non-wellfounded proof theory studies proofs as possibly infinite (but finitely
branching) trees, where logical consistency is maintained by means of global condi-
tions called progressing (or validity) criteria. In this setting, the so-called regular
(also called circular or cyclic) proofs receive a special attention, in that they admit
a finite description based on (possibly cyclic) directed graphs.

This area of proof theory makes its first appearance (in its modern guise) in
the context of the modal µ-calculus [1, 2]. Since then, it has been extensively in-
vestigated from many perspectives, such as predicate logic [3, 4], algebras [5, 6],
arithmetic [7, 8, 9], proofs-as-programs interpretations [10, 11, 12, 13, 14], and
continuous cut-elimination [15, 16], establishing itself as an ideal setting for ma-
nipulating least and greatest fixed points, and hence for modelling induction and
coinduction principles. In particular, in [12, 13, 14] non-wellfounded proof-theory
has been investigated under the Curry-Howard correspondence paradigm, where
proofs are interpreted as (functional) programs, and program execution is given in
terms of cut elimination. Non-wellfounded proofs can be understood as programs
defined by a possibly infinite list of instructions, where the progressing criterion
plays the role of a totality requirement (i.e., functions computed by progressing
proofs are always well-defined on all arguments). On the other hand, the regularity
condition has a natural counterpart in the notion of uniformity : regular proofs can
be properly regarded as programs, i.e. as finite sets of machine instructions, thus
having a ‘computable’ behaviour.

1Department of Computer Science, University of Southern Denmark, mac-

clavio@gmail.com
2School of Computer Science, University of Birmingham, Birmingham, UK,

g.curzi@bham.ac.uk
3LIS, Aix Marseille Université, giulio.guerrieri@lis-lab.fr

1

2NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

In joint work with Das [17], the second author extended this computational read-
ing of non-wellfounded proofs to the realm of computational complexity, by introduc-
ing circular proof systems capturing, respectively, the class of functions computable
in polynomial time (FP) and the elementary functions (FELEMENTARY). These
proof systems are defined by identifying global conditions on circular progressing
proofs motivated by ideas from Implicit Computational Complexity (ICC), i.e., the
study of machine-free and bound-free characterisations of complexity classes. More
specifically, these circular proof systems are based on Bellantoni and Cook’s algebra
of functions for safe recursion [18], one of the cornerstones of ICC.

In a follow up paper [19], the second author and Das generalised the characteri-
sation results in [17] to capture FP/poly, i.e., the class of functions computable in
polynomial time by Turing machines with access to polynomial advice or, equiva-
lently, computable by non-uniform families of polynomial-size circuits [20]. Specif-
ically, non-uniform complexity is modelled by more permissive non-wellfounded
proof systems (compared to circular proof systems), essentially obtained by weak-
ening the regularity condition, hence relaxing finite presentability of proofs. Note,
indeed, that FP/poly includes undecidable problems, and so cannot be characterised
by purely circular proof systems, which typically represent only computable func-
tions.

In this paper we rather follow an alternative route to FP/poly based on linear
logic [21]. Linear logic (LL) is a refinement of both classical and intuitionistic logic
that allows a better control over computational resources thanks to the so-called
exponential modalities (denoted by ! and ?), which mark the distinction between
those assumptions that can be used linearly, that is, exactly once, and those ones
that are reusable at will. According to the Curry-Howard reading of linear logic,
these modalities introduce non-linearity in functional programs: a proof of the
linear implication !A ⊸ B is interpreted as a program returning an output of type
B using an arbitrary (but finite) number of times an input of type A.

The approaches to ICC based on linear logic have spurred a variety of methods
for taming complexity. The central idea is to weaken the exponential rules in order
to induce a bound on cut-elimination, hence reducing the computational strength
of the system. These weaker versions of linear logic, often called light logics, are
typically formulated in a second-order framework, using type polymorphism for
iterating resource-bounded Turing machine transition functions, a crucial step for
proving completeness w.r.t. a complexity class. Over the years, several light logics
have been proposed to characterise major complexity classes. Examples are soft
linear logic (SLL) or light linear logic (LLL) [22, 23] for FP, and elementary linear
logic (ELL) [24, 25] for FELEMENTARY.

Continuing this tradition, in a series of papers [26, 27] Mazza introduced parsi-
monious logic (PL), a variant of linear logic (defined in a type-theoretical fashion)
where the exponential modality ! satisfies Milner’s law (i.e., !A ˛ A ⊗ !A) and
invalidates the implications !A ⊸ !!A (digging) and !A ⊸ !A ⊗ !A (contraction).
In parsimonious logic, a proofs of !A can be interpreted as a stream over (a fi-
nite set of) proofs of A, i.e., as a greatest fixed point, where the linear implications
A⊗ !A ⊸ !A (co-absorption) and !A ⊸ A⊗ !A (absorption) can be computationally
read as the push and pop operations on streams.

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS3

In joint work with Terui [27], Mazza introduced a second-order non-uniform ver-
sion of PL, and showed that the resulting system, called nuPL∀ℓ, captures the prob-
lems decidable by non-uniform families of circuits (P/poly). Specifically, nuPL∀ℓ
models non-uniformity via an infinitely branching rule that takes a finite set of
proofs D1, . . . ,Dn of A and a (possibly non-recursive) function f : N → {1, . . . , n}
as premises, and constructs a proof of !A representing a stream of proofs of the form
S = (Df(0),Df(1), . . . ,Df(n), . . .). On the one hand, thanks to this rule, nuPL∀ℓ can
express Turing machines with advices. On the other hand, polynomial step cut-
elimination is guaranteed thanks to the absence of digging and contraction prin-
ciples. As a byproduct of their result, second-order (uniform) parsimonious logic,
i.e. PL∀ℓ, characterises the class of problems decidable in polynomial time (P)1.
Hence, parsimonious logic exponential modalities exploit in an essential way the
above-mentioned proof-theoretical non-uniformity, which in turn deeply interfaces
with notions of non-uniformity from computational complexity [27].

The analysis of parsimonious logic conducted in [26, 27] reveals that fixed point
definitions of the exponentials are better behaving when digging and contraction
are discarded. On the other hand, the co-absorption rule cannot be derived in LL,
and so it prevents parsimonious logic becoming a genuine subsystem of the latter.
This led the authors of the present paper to introduce parsimonious linear logic, a
co-absorption-free subsystem of linear logic that nonetheless allows a stream-based
interpretation of the exponentials.

In this paper we investigate a non-wellfounded version of second-order parsimo-
nious logic, where “streams” of proofs such as S defined by the infinitely branch-
ing rule !I are modelled by (finitely branching but) non-wellfounded proofs. The
resulting system is non-wellfounded parsimonious linear logic (PLL∞2). To avoid
fallacious reasoning and to recover logical consistency we adapt to our setting the
progressing criterion, which relies on threads of exponential formulas occurring in
the infinite branches of a prooftree. The restriction of PLL∞2 to progressing proofs,
called pPLL∞2 , allows an interpretation of the modal formulas !A and its dual ?A⊥

in terms of greatest and least fixed points respectively2.
As it stands, pPLL∞2 far exceeds the computational strength of Mazza’s systems,

as nothing guarantees that non-wellfounded proofs of !A represent streams over
finite sets of data of type A, a built-in feature of the rule !I. This is achieved by
imposing further global requirements on the structure of non-wellfounded proofs,
obtaining the systems non-uniform parsimonious linear logic (wrPLL∞2) and circu-
lar parsimonious linear logic (rPLL∞2). Specifically, in analogy with [19], rPLL∞2 is a
system of circular proofs, while wrPLL∞2 is defined via a weak regularity condition.
Roughly, wrPLL∞2 and rPLL∞2 correspond to the systems nuPL∀ℓ and PL∀ℓ

respec-
tively. Thus, the distinction between regularity and weak regularity duly reflects
the interplay between uniform and non-uniform computation.

1Despite not being explicitly stated in [27], the latter statement is a straightforward conse-
quence of the characterisation result for nuPL∀ℓ.

2Note that definitions of exponentials based on fixed points have been proposed in the context
of µMALL by defining !A := νX.(1&A&(X⊗X)) and ?A := µX.(⊥⊕A⊕ (X`X)), where ν and

µ are the greatest and the least fixed point operator respectively [28]. However, as shown in [29],
such an encoding does not give rise to a Seely category, which is essential to model linear logic.
Also, as observed in [28], cut-reductions for the fixed point exponentials and for the standard

exponential radically diverge.

4NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

On a technical side, wrPLL∞2 and rPLL∞2 are free of the co-absorption rule from
parsimonious logic, so the “push” operation on streams of proofs cannot be modelled
in our systems. This fact has a twofold advantage: on the one hand, we improve
the complexity-theoretic results of [27], showing that the push constructor is not
essential for proving the characterisation theorems; on the other hand, the absence
of a co-absorption rule makes the fully-fledged inductive counterparts of wrPLL∞2
and rPLL∞2 , that we call nuPLL2 and PLL2, de facto subsystems of linear logic.
In fact, to stress this relevant departure from Mazza’s parsimonious logic, we use
the terminology parsimonious linear logic when referring to our (non-)wellfounded
systems.

At a complexity-theoretic level, our results contribute to Mazza’s work on par-
simonious logic in many respects. First, our characterisation results extend those
established in [26, 27], as the latter only relate (type) systems with classes of predi-
cated (i.e., P/poly and P). Secondly, our non-wellfounded approach to nuPL∀ℓ has
the advantage of trading the constant growth-rate function f : N → {1, . . . , n},
defining the rule !I, for the weak regularity condition, making the characterisation
results more “implicit”, thus closer to ICC.

Contributions. In this paper we present a series of complexity-theoretic results
showing, in particular, that wrPLL∞2 and nuPLL2 duly characterise FP/poly, while
rPLL∞2 and PLL2 characterise FP (Theorem 46). Out proof methods are sum-
marised by the diagram in Figure 1 relating various (non)wellfounded proof (and
type) systems with the complexity classes FP/poly and FP. The central result of
the diagram is a polynomial modulus of continuity for cut-elimination (Lemma 55),
from which we infer that wrPLL∞2 is sound for FP/poly, and that rPLL∞2 is sound
for FP (Theorem 56). Completeness requires a series of intermediate steps. We
first introduce in Section 6.2 the type system nuPTA2, in which computation can
access entries of a stream, and its subsystem PTA2. Then we show an encoding
of polynomial time Turing machines with (polynomial) advice in nuPTA2, essen-
tially by adapting standard methods from [30, 31] to the setting of non-uniform
computation. This allows us to prove that nuPTA2 is complete for FP/poly and
that PTA2 is complete for FP (Theorem 75). Thirdly, we define computationally
sound translations from nuPTA2 to nuPLL2, and from PTA2 to PLL2 (Theorem 81).
Finally, we define computationally sound translations from nuPLL2 to wrPLL∞2 , and
from PLL2 to rPLL∞2 (Theorem 36). As a byproduct of our series of theorems, we
obtain that nuPTA2 characterises FP/poly, while PTA2 characterises FP.

Outline of the paper. This paper is structured as follows. In Section 2 we re-
call some preliminaries on linear logic, non-wellfounded proofs and non-uniform
complexity. In Section 3 we introduce parsimonious linear logic and define the
wellfounded proof systems PLL2, nuPLL2, and the non-wellfounded proof systems
PLL∞2 , pPLL∞2 , wrPLL∞2 , rPLL∞2 . In Section 5 we define a relational semantics for
our proof systems and establish some basic properties of the model. In Section 6 we
prove the complexity-theoretic results. In particular, Section 6.1 is devoted to prov-
ing the soundness theorem for wrPLL∞2 and rPLL∞2 (Theorem 56), while Section 6.2
shows the completeness theorem (Theorem 75).

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS5

rPLL∞2 wrPLL∞2

FP PLL2 nuPLL2 FP/poly

PTA2 nuPTA2

⊆
Theorem 56.1 Theorem 56.2

Theorem 75.1

⊆
Theorem 36.1 Theorem 36.2

Theorem 75.2
⊆

Theorem 81.2 Theorem 81.1

Figure 1. Grand tour diagram.

2. Preliminary notions

In this section we recall some basic notions from (non-wellfounded) proof theory
and computational complexity.

2.1. Derivations and coderivations. We assume that the reader is familiar with
the syntax of sequent calculus, e.g. [32]. Here we specify some conventions adopted
to simplify the content of this paper.

In this work we consider (sequent) rules of the form r
Γ

or
Γ1

r
Γ

or
Γ1 Γ2

r
Γ

,

and we refer to the sequents Γ1 and Γ2 as the premises, and to the sequent Γ
as the conclusion of the rule r. To avoid technicalities of the sequents-as-lists
presentation, we follow [33] and we consider sequents as sets of occurrences of
formulas from a given set of formulas. In particular, when we refer to a formula in
a sequent we always consider a specific occurrence of it.

Definition 1. A (binary, possibly infinite) tree T is a subset of words in {1, 2}∗
that contains the empty word ϵ (the root of T) and is ordered-prefix-closed (i.e.,
if n ∈ {1, 2} and vn ∈ T , then v ∈ T , and if moreover v2 ∈ T , then v1 ∈ T).
Elements of a tree T are called nodes and a node vn ∈ T with n ∈ {1, 2} is a
child of v ∈ T . Given a tree T and a node v ∈ T , a branch B of T (from v) is
a set of nodes in T of the form vw (for any w ∈ {1, 2}∗) such that if they have at
least one child in T then they have exactly one child in B.

A coderivation over a set of rules S is a labeling D of a tree by sequents
such that if v is a node with children v1, . . . , vn (with n ∈ {0, 1, 2}), then there
is an occurrence of a rule r in S with conclusion the sequent D(v) and premises
the sequents D(v1), . . . ,D(vn). The height of r in D is the length of the node
v ∈ {1, 2}∗ such that D(v) is the conclusion of r.

The conclusion of D is the sequent D(ϵ). If v is a node of the tree, the sub-
coderivation of D rooted at v is the coderivation Dv defined by Dv(w) = D(vw).

A coderivation D is r-free (for a rule r∈S) if it contains no occurrence of r. It is
regular if it has finitely many distinct sub-coderivations; it is non-wellfounded
if it labels an infinite tree, and it is a derivation (with size |D| ∈ N) if it labels a
finite tree (with |D| nodes).

Given a set of coderivations X, a sequent Γ is provable in X (noted ⊢X Γ) if
there is a coderivation in X with conclusion Γ.

While derivations are usually represented as finite trees, regular coderivations
can be represented as finite directed (possibly cyclic) graphs: a cycle is created by
linking the roots of two identical subcoderivations.

6NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

Definition 2 (Bar). Let D be a coderivation. A set V of nodes in D is a bar (of
D) if:

• any branch of D contains a node in V;
• any pair of nodes in V are mutually incomparable (w.r.t. the partial order
in D).

We say that a bar V has height h if every node in V that is not a leaf of D has
height ≥ h.

2.2. Non-uniform complexity classes. The goal of this paper is a proof the-
oretic characterisation of the complexity class FP/poly [20], that is, the class of
functions computable in polynomial time (with respect to the length of the input)
by a Turing machine having access to a “polynomial amount of advice” (determined
only by the length of the input). Formally, if FP is class of functions computable
in polynomial time by a Turing machine, FP/poly is defined as follows.

Definition 3. FP/poly is the class of functions f(x⃗) for which, for any n ∈ N,
there is a string (called advice) αn of length polynomial in n and f ′(y, x⃗) ∈ FP
such that f(x⃗) = f ′(α|x⃗|, x⃗).

FP/poly extends FP and contains some uncomputable functions, for instance
the characteristic function of undecidable unary languages [20, Example 6.4]. The
class FP/poly can be also defined in terms of non-uniform families of circuits.

Theorem 4 ([20], Thm. 6.11). A function f is in FP/poly iff there is polynomial-
size familiy of circuits computing f .

2.3. An equivalent definition of FP/poly. We adopt a different presentation of
FP/poly that facilitates the proof of completeness.

A relation is a function r(x⃗) such that we always have r(x⃗) ∈ {0, 1}.

Definition 5 (Relativised complexity classes). Let R be a set of relations. The
class FP(R) consists of just the functions computable in polynomial time by a
Turing machine with access to an oracle for each r ∈ R.

Let us write R := {r : Nk → {0, 1} | |x⃗| = |y⃗| =⇒ r(x⃗) = r(y⃗)}. Note
that the notation R is suggestive here, since its elements are essentially maps from
lengths/positions to Booleans, and so may be identified with Boolean streams.

Proposition 6. [See, e.g., [19]] FP/poly = FP(R).

Proof sketch. For the left-right inclusion, let p(n) be a polynomial andC = (Cn)n<ω

be a circuit family with each Cn taking n Boolean inputs and having size < p(n).
We need to show that the language computed by C is also computed in FP(R). Let
c ∈ R be the function that, on inputs x, y returns the |y|th bit of C|x|. Using this
oracle we can compute C|x| by polynomially queries to c, and this may be evaluated
as usual using a polynomial-time evaluator in FP.

For the right-left inclusion, notice that a polynomial-time machine can only make
polynomially many calls to oracles with inputs of only polynomial size. Thus, if
f ∈ FP(R) then there is some pf with f ∈ FP(R<pf), where R<pf is the restriction
of each r ∈ R to only its first pf (|x⃗|) many bits. Now, since f can only call a fixed
number of oracles from R, we can collect these finitely many polynomial-length
prefixes into a single advice string for computation in FP/poly. □

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS7

ax
A,A⊥

Γ, A A⊥,∆
cut

Γ,∆

Γ, A,B`
Γ, A`B

Γ, A B,∆
⊗
Γ,∆, A⊗B

1
1

Γ
⊥
Γ,⊥

Γ, A
f!p

?Γ, !A

Γ
?w

Γ, ?A

Γ, A, ?A
?b

Γ, ?A

Γ, A
∀ X ̸∈ FV (Γ)
Γ,∀X.A

Γ, A[B/X]
∃ B is (!,?)-free

Γ,∃X.A

Figure 2. Sequent calculus rules of PLL2.

1 0 Dabs Dder

ax
X⊥

1 , X3

ax
X⊥

2 , X4
⊗

X⊥
1 , X⊥

2 , X3 ⊗X4`
(X⊥

1 `X⊥
2), (X3 ⊗X4)`

(X⊥
1 `X⊥

2)` (X3 ⊗X4)
∀
∀X.(X⊥ `X⊥)` (X ⊗X)

ax
X⊥

1 , X4

ax
X⊥

2 , X3
⊗

X⊥
1 , X⊥

2 , X3 ⊗X4`
(X⊥

1 `X⊥
2), (X3 ⊗X4)`

(X⊥
1 `X⊥

2)` (X3 ⊗X4)
∀
∀X.(X⊥ `X⊥)` (X ⊗X)

ax
A⊥, A

ax
?A⊥, !A

⊗
A⊥, ?A⊥, A⊗ !A

?b
?A⊥, A⊗ !A`

?A⊥ ` (A⊗ !A)

ax
A⊥, A

?w
A⊥, ?A⊥, A

?b
?A⊥, A`
?A⊥ `A

Figure 3. Examples of derivations in PLL2.

3. Second-order Parsimonious Linear Logic

In this paper we consider the set of formulas for second-order multiplicative-
exponential linear logic with units (MELL2). These are generated by a countable
set of propositional variables A = {X,Y, . . .} using the following grammar:

A,B ::= X | X⊥ | A⊗B | A`B | !A | ?A | 1 | ⊥ | ∀X.A | ∃X.A

A !-formula (resp. ?-formula) is a formula of the form !A (resp. ?A). We
denote by FV (A) the set of propositional variables occurring free in A, and by
A[B/X] the standard meta-level (and capture-avoiding) substitution of B for the

free occurrences of the propositional variables X in A. Linear negation (·)⊥ is

defined by De Morgan’s laws (A⊥)
⊥

= A, (A⊗B)
⊥

= A⊥ ` B⊥, (!A)
⊥

= ?A⊥,

(1)⊥ = ⊥, and (∀X.A)
⊥

= ∃X.A⊥, while linear implication is defined as A ⊸
B := A⊥ `B.

Definition 7. Second-order parsimonious linear logic, denoted by PLL2, is
the set of rules in Figure 2, that is, axiom (ax), cut (cut), tensor (⊗), par (`),
one (1), bottom (⊥), functorial promotion (f!p), weakening (?w), absorption
(?b), (second-order) universal quantifier (∀), (second-order) existential
quantifier (∃). Rules ax, ⊗, `, 1 and ⊥ are called multiplicative, rules f!p, ?w
and ?b are called exponential. Finally, rules ∀ and ∃ are called second-order.
We also denote by PLL2 the set of derivations over the rules in PLL2.

Example 8. Figure 3 gives some examples of derivation in PLL2. The (distinct)
derivations 0 and 1 prove the same formula B = ∀X.(X⊥`X⊥)` (X ⊗X), where
X1, X2, X3, X4 are occurrences of the propositional variable X. The derivation Dabs

proves the absorption law !A ⊸ A⊗ !A; the derivation Dder proves the dereliction
law !A ⊸ A.

The cut-elimination relation →cut in PLL2 is the union of principal cut-
elimination steps in Figure 4 (multiplicative), Figure 5 (exponential) and Fig-
ure 6 (second-order), and commutative cut-elimination steps in Figure 7. The
reflexive-transitive closure of →cut is noted →∗

cut.

8NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

ax
A,A⊥ Γ, A

cut
Γ, A

→cut Γ, A

Γ, A,B`
Γ, A`B

∆, A⊥ B⊥,Σ
⊗
∆, A⊥ ⊗B⊥,Σ

cut
Γ,∆,Σ

→cut

Γ, B,A A⊥,∆
cut

Γ,∆, B B⊥,Σ
cut

Γ,∆,Σ

Γ
⊥
Γ,⊥

1
1

cut
Γ

→cut Γ

Figure 4. Multiplicative cut-elimination steps in PLL2.

Γ, A
f!p

?Γ, !A

A⊥,∆, B
f!p

?A⊥, ?∆, !B
cut

?Γ, ?∆, !B

→cut

Γ, A A⊥,∆, B
cut

Γ,∆, B
f!p

?Γ, ?∆, !B

Γ, A
f!p

?Γ, !A

∆
?w

∆, ?A⊥
cut

?Γ,∆

→cut

∆
?w

?Γ,∆

Γ, A
f!p

?Γ, !A

∆, A⊥, ?A⊥
?b

∆, ?A⊥
cut

?Γ,∆

→cut Γ, A

Γ, A
f!p

?Γ, !A ∆, A⊥, ?A⊥
cut

?Γ,∆, A⊥
cut

Γ, ?Γ,∆
?b

?Γ,∆

Figure 5. Exponential cut-elimination steps in PLL2.

Γ, A
∀
Γ,∀X.A

∆, A⊥[B/X]
∃

∆,∃X.A⊥
cut

Γ,∆

→cut

Γ, A[B/X] ∆, A⊥[B/X]
cut

Γ,∆

Figure 6. Second-order cut-elimination steps in PLL2.

Γ1, A
r
Γ, A A⊥,∆

cut
Γ,∆

→cut

Γ1, A A⊥,∆
cut

Γ1,∆
r
Γ,∆

Γ1, A Γ2
r

Γ, A ∆, A⊥
cut

Γ,∆

→cut

Γ1, A A⊥,∆
cut

Γ1,∆ Γ2
r

Γ,∆

Figure 7. Commutative cut-elimination steps in PLL2, where r ̸= cut.

Theorem 9. For every D ∈ PLL2, there is a cut-free D′ ∈ PLL2 such that D →∗
cut

D′.

Sketch of proof. We associate with any derivation D in PLL2 a derivation D♠ in
MELL2 sequent calculus. Thanks to additional commutative cut-elimination steps,
we prove that cut-elimination in MELL2 rewrites D♠ to the translation of a cut-free
derivation in PLL2. The termination of cut-elimination in PLL2 follows from the
result in MELL2 [34]. Details for the propositional fragment are in [35], and extend
to the second-order setting in a straightforward way. □

A byproduct of our grand tour diagram in Figure 1 is that PLL2 represents
exactly the class of functions in FP (Theorem 12). To see this, we introduce a
rather permissive notion of representability for PLL2, along the lines of [31].

Definition 10 (Representability). A set T is represented in PLL2 by a formula
T if there is an injection (·) from T to the set of cut-free derivations in PLL2 with
conclusion T. A (total) function f : T1× . . .×Tn → T is representable in PLL2 if,
for some T1, . . . ,Tn,T representing T1, . . . , Tn, T respectively, there is a derivation

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS9

ax

A⊥, A
?w

?(B⊗A⊗A⊥), A⊥, A
`

S[A]
b1

B

bn

B

ax

A⊥, A
ax

A⊥, A
⊗

A⊗A⊥, A⊥, A
⊗

(B⊗A⊗A⊥), A⊥, A

...

(B⊗A⊗A⊥), n−1. . . , (B⊗A⊗A⊥), A⊥, A
ax

A⊥, A
⊗

(B⊗A⊗A⊥), n−1. . . ,B⊗A⊗A⊥), A⊗A⊥, A⊥, A
⊗

(B⊗A⊗A⊥), n. . ., (B⊗A⊗A⊥), A⊥, A
?b

?(B⊗A⊗A⊥), A⊥, A
`

S[A]

Figure 8. Encoding of the empty string ε and of a boolean string
b1 · · · bn ∈ {0, 1}∗.

D of T1 ⊸ . . . ⊸ Tn ⊸ T in PLL2 such that, for all x1 ∈ T1, . . . , xn ∈ Tn:

D

T1 ⊸ . . . ⊸ Tn ⊸ T

x1

T1
⊸e

...

xn−1

Tn−1
⊸e

Tn ⊸ T

xn

Tn
⊸e

T

→∗
cut f(x1,...,xn)

T

where
Γ, A ⊸ B ∆, A

⊸e

Γ,∆, B
is shorthand notation for:

Γ, A ⊸ B

∆, A
ax

B⊥, B
⊗
∆, (A ⊸ B)⊥, B

cut

Γ,∆, B

We denote with f a derivation representing f .

Example 11. The set of booleans B = {0,1} is represented in PLL2 by the formula
B = ∀X.(X⊥`X⊥)`(X⊗X) thanks to the derivations 0 and 1 shown in Figure 3.
Boolean strings are encoded by the formula S := ∀X.!(B ⊸ X ⊸ X) ⊸ X ⊸ X.
We will actually mainly work with a parametric version of S, i.e., S[A] := !(B ⊸
A ⊸ A) ⊸ A ⊸ A, for any formula A. We write S[] to denote S[A] for some A.
The encoding of boolean strings is as in Figure 8.

Akin to light linear logic [21, 36, 37], the exponential rules of PLL2 are weaker
than those in MELL2: the usual promotion rule is replaced by f!p (functorial pro-
motion), and the usual contraction and dereliction rules by ?b. As a consequence,
the digging formula !A ⊸ !!A and the contraction formula !A ⊸ !A ⊗ !A are not
provable in PLL2 (unlike the dereliction formula, Example 8).

10NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

This allows us to interpret computationally these weaker exponentials in terms of streams,
as well as to control the complexity of cut-elimination [26, 27], which can be poly-
nomially bounded. As a consequence, we obtain the following characterisation
theorem for PLL2:

Theorem 12 (PLL2 characterises FP). A function f is in FP iff f is representable
in PLL2.

On the other hand, it is easy to show that MELL2 = PLL2 + digging: if we add
the digging formula as an axiom to the set of rules in Figure 2, then the contraction
formula becomes provable, and the obtained proof system coincides with MELL2.

Remark 13. The (!, ?)-freeness of the formula instantiated in the existential rule
(∃) is crucial for establishing a polynomial bound on cut-elimination. This linearity
restriction prevents the encoding of exponential functions as discussed in more detail
in Section 6.2 (see Remark 77).

4. Non-wellfounded Parsimonious Linear Logic

In linear logic, a formula !A is interpreted as the availability of A at will. This
intuition still holds in PLL2. Indeed, the Curry-Howard correspondence interprets
rule f!p introducing the modality ! as an operator taking a derivation D of A and
creating a (infinite) stream (D,D, . . . ,D, . . .) of copies of the proof D. Each element
of the stream is accessed via the cut-elimination step f!p-vs-?b in Figure 5: rule ?b
is interpreted as an operator popping one copy of D out of the stream. Pushing
these ideas further, Mazza [26] introduced parsimonious logic PL, a type system
(comprising rules f!p and ?b) characterizing the logspace decidable problems.

Mazza and Terui then introduced in [27] another type system, nuPL∀ℓ, based
on parsimonious logic and capturing the complexity class P/poly (i.e., the prob-
lems decidable by polynomial size families of boolean circuits [20]). Their sys-
tem is endowed with a non-uniform version of the functorial promotion, which
takes a finite set of proofs D1, . . . ,Dn of A and a (possibly non-recursive) function
f : N → {1, . . . , n} as premises, and constructs a proof of !A modelling the stream
(Df(0),Df(1), . . . ,Df(n), . . .). This typing rule is used to encode the so-called advices
for Turing machines, an essential step to show completeness for P/poly.

In a similar vein, we can endow PLL2 with a non-uniform version of f!p called
infinitely branching promotion (ib!p), which constructs a stream (D0,D1, . . . ,
Dn, . . .) with finite support, i.e., made of finitely many distinct derivations (of the
same conclusion):3

(1)

D0

Γ, A

D1

Γ, A · · ·
Dn

Γ, A · · ·
ib!p {Di | i ∈ N} is finite

?Γ, !A

!w
!A

Γ, A ∆, !A
!b

Γ,∆, !A

The side condition on ib!p provides a proof theoretic counterpart to the function
f : N → {1, . . . , n} in nuPL∀ℓ. Clearly, f!p is subsumed by the rule ib!p, as it
corresponds to the special (uniform) case where Di = Di+1 for all i ∈ N.

3Rule ib!p is reminiscent of the ω-rule used in (first-order) Peano arithmetic to derive formulas
of the form ∀xϕ that cannot be proven in a uniform way.

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS11

Definition 14. We define the set of rules nuPLL2 := {ax,⊗,`, 1,⊥, cut, ?b, ?w, ib!p,∀,∃}.
We also denote by nuPLL2 the set of derivations over the rules in nuPLL2.

4

There are some notable differences between nuPLL2 and Mazza and Terui’s sys-
tem nuPL∀ℓ [27]. As opposed to nuPLL2, nuPL∀ℓ is designed as an intuitionistic
(type) system. Furthermore, to achieve completeness for P/poly, the latter is en-
dowed with the co-absorption (!b) and co-weakening (!w) rules displayed in (1).

{
Di

Γ, A

}
i∈N

ib!p
?Γ, !A

{
D′

i

A⊥,∆, B

}
i∈N

ib!p
?A⊥, ?∆, !B

cut
?Γ, ?∆, !B

→cut


Di

Γ, A

D′
i

A⊥,∆, B
cut

Γ,∆, B


i∈N

ib!p
?Γ, ?∆, !B

{
Di

Γ, A

}
i∈N

ib!p
?Γ, !A

∆
?w

∆, ?A⊥
cut

?Γ,∆

→cut

∆
?w

?Γ,∆

{
Di

Γ, A

}
i∈N

ib!p
?Γ, !A

∆, A⊥, ?A⊥
?b

∆, ?A⊥
cut

?Γ,∆

→cut
D0

Γ, A

{
Di+1

Γ, A

}
i∈N

ib!p
?Γ, !A ∆, A⊥, ?A⊥

cut
?Γ,∆, A⊥

cut
Γ, ?Γ,∆

?b
?Γ,∆

Figure 9. Exponential cut-elimination steps in nuPLL2.

Cut-elimination steps for nuPLL2 are in Figures 4, 7 and 9. In particular, the step
ib!p-vs-?b in Figure 9 pops the first premiseD0 of ib!p out of the stream (D0,D1, . . . ,Dn, . . .).

The notion of representability from Definition 10 extends to nuPLL2 in the ob-
vious way.

A byproduct of our gran tour diagram in Figure 1 is the following characterisation
result:

Theorem 15. A function f is in FP/poly iff it is representable in nuPLL2.

4.1. From infinitely branching proofs to non-wellfounded proofs. In this
paper we explore a dual approach to nuPL∀ℓ (and nuPLL2): instead of considering
(wellfounded) derivations with infinite branching, we consider (non-wellfounded)
coderivations with finite branching. To this end, the infinitary rule ib!p of nuPLL2
is replaced by the binary rule below, called conditional promotion (c!p):

(2)
Γ, A ?Γ, !A

c!p
?Γ, !A

Definition 16. We define the set of rules PLL∞2 := {ax,⊗,`, 1,⊥, cut, ?b, ?w, c!p,∀,∃}.
We also denote by PLL∞2 the set of coderivations over the rules in PLL∞2 .

In other words, PLL∞2 is the set of coderivations generated by the same rules
as PLL2, except that f!p is replaced by c!p. From now on, we will only consider
coderivations in PLL∞2 .

Example 17. Figure 10 shows two non-wellfounded coderivations in PLL∞2 : D⊥
(resp. D?) has an infinite branch of cut (resp. ?b) rules, and is (resp. is not) regular.

4To be rigorous, this requires a slight change in Definition 1: the tree labeled by a derivation in
nuPLL2 must be over Nω instead of {1, 2}∗, in order to deal with infinitely branching derivations.

12NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

D⊥ := ax
A⊥, A

ax
A⊥, A

...
cut

Γ, A
cut

Γ, A
cut

Γ, A

D? :=

...
?b
A,A, ?A

?b
A, ?A

?b
?A

Figure 10. Two non-wellfounded and non-progressing coderiva-
tions in PLL∞2 .

 D

Γ′
r
Γ


◦

:=

D◦

Γ′
r
Γ

 D1

Γ1

D2

Γ2
t

Γ


◦

:=

D◦
1

Γ1

D◦
2

Γ2
t

Γ

 D

Γ, A
f!p

?Γ, !A


◦

:= D◦

Γ, A

D◦

Γ, A

...
c!p

?Γ, !A
c!p

?Γ, !A
c!p

?Γ, !A D

Γ′
r
Γ


•

:=

D•

Γ′
r
Γ

 D1

Γ1

D2

Γ2
t

Γ


•

:=

D•
1

Γ1

D•
2

Γ2
t

Γ

 D0

Γ, A · · ·
Dn

Γ, A · · ·
ib!p

?Γ, !A


•

:= D•
0

Γ, A

D•
n

Γ, A

...
c!p

?Γ, !A
c!p

...
c!p

?Γ, !A
for all r ∈ {`,⊥, ?w, ?b} and t ∈ {cut,⊗} (ax and 1 are translated by themselves).

Figure 11. Translations (·)◦ from PLL2 to PLL∞2 , and (·)• from
nuPLL2 to PLL∞2 .

D = c!p(D0,...,Dn,...) = D0

Γ, A

D1

Γ, A

Dn

Γ, A

...
c!p

?Γ, !A
c!p

...
c!p

?Γ, !A
c!p

?Γ, !A

Figure 12. A non-wellfounded box in PLL∞2 .

We can embed PLL2 and nuPLL2 into PLL∞2 via the conclusion-preserving trans-
lations (·)◦ : PLL2 → PLL∞2 and (·)• : nuPLL2 → PLL∞2 defined in Figure 11 by
induction on derivations: they map all rules to themselves except f!p and ib!p,
which are “unpacked” into non-wellfounded coderivations that iterate infinitely
many times the rule c!p.

An infinite chain of c!p rules (Figure 12) is a coderivation of PLL∞2 that is inter-
esting on its own right.

Definition 18. A non-wellfounded box (nwb for short) is a coderivation D with
an infinite branch {ϵ, 2, 22, . . . } (the main branch of D) all labeled by c!p rules
as in Figure 12, where !A in the conclusion is the principal formula of D, and
D0,D1, . . . are the calls of D. We denote D by c!p(D0,...,Dn,...).

Let S = c!p(D0,...,Dn,...) be a nwb. We may write S(i) to denote Di. We say that

S has finite support (resp. is periodic with period k) if {S(i) | i ∈ N} is finite
(resp. if S(i) = S(k + i) for any i ∈ N). A coderivation D has finite support
(resp. is periodic) if any nwb in D has finite support (resp. is periodic).

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS13

Γ, A ?Γ, !A
c!p

?Γ, !A

A⊥,∆, B ?A⊥, ?∆, !B
c!p

?A⊥, ?∆, !B
cut

?Γ, ?∆, !B

→cut

Γ, A A⊥,∆, B
cut

Γ,∆, B

?Γ, !A ?A⊥, ?∆, !B
cut

?Γ, ?∆, !B
c!p

?Γ, ?∆, !B

Γ, A ?Γ, !A
c!p

?Γ, !A

∆
?w

∆, ?A⊥
cut

?Γ,∆

→cut

∆
?w

?Γ,∆

Γ, A ?Γ, !A
c!p

?Γ, !A

∆, A⊥, ?A⊥
?b

∆, ?A⊥
cut

?Γ,∆

→cut

Γ, A

?Γ, !A ∆, A⊥, ?A⊥
cut

?Γ,∆, A⊥
cut

Γ, ?Γ,∆
?b

?Γ,∆

Figure 13. Exponential cut-elimination steps for coderivations of PLL∞2 .

Example 19. Consider the following nwb of the formula !B, where B has at two
distinct derivations 0 and 1 (Example 8), and ij ∈ {0,1} for all j ∈ N.

(3) c!p(i0,...,in,...) =
i0

B

i1

B

in

B

...
c!p

!B
c!p

...
c!p

!B
c!p

!B

Thus c!p(i0,...,in,...) has finite support, as its only calls can be 0 or 1, and it is

periodic if and only if so is the infinite sequence (i0, . . . , in, . . .) ∈ {0,1}ω.

The cut-elimination steps →cut for PLL
∞
2 are in Figures 4, 7 and 13. Computa-

tionally, they allow the c!p rule to be interpreted as a coinductive definition of a
stream of type !A from a stream of the same type to which an element of type A is
prepended. In particular, the cut-elimination step c!p-vs-?b accesses the head of a
stream: rule ?b acts as a popping operator.

As a consequence, the nwb in Figure 12 constructs a stream (D0,D1, . . . ,Dn, . . .)
similarly to ib!p but, unlike the latter, all the Di’s may be pairwise distinct. The
reader familiar with linear logic can see a nwb as a box with possibly infinitely
many distinct contents (its calls), while usual linear logic boxes (and f!p in PLL2)
provide infinitely many copies of the same content.

Rules f!p in PLL2 and ib!p in nuPLL2 are mapped by (·)◦ and (·)• into nwbs,
which are non-wellfounded coderivations. Hence, the cut-elimination steps f!p-vs-f!p
in PLL2 and ib!p-vs-ib!p in nuPLL2 can only be simulated by infinitely many cut-
elimination steps in PLL∞2 .

Note that D⊥ ∈ PLL∞2 in Figure 10 is not cut-free, and if D⊥ →cut D then
D = D⊥: thus, D⊥ cannot reduce to a cut-free coderivation, and so the cut-
elimination theorem fails in PLL∞2 .

The notion of representability in Definition 10 can be easily adapted to PLL∞2 ,
essentially by generalising derivations to arbitrary coderivations.

4.2. Consistency via a progressing condition. In a non-wellfounded setting
such as PLL∞2 , any sequent is provable. Indeed, the (non-wellfounded) coderivation
D⊥ in Figure 10 shows that any non-empty sequent (in particular, any formula) is
provable in PLL∞2 .

The standard way to recover logical consistency in non-wellfounded proof theory
is to introduce a global soundness condition on coderivations, called progressing
criterion. In PLL∞2 , this criterion relies on tracking occurrences of !-formulas in a
coderivation.

14NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

ax

A,A⊥

F
1
, . . . F

n
, A A⊥, G

1
, . . . , G

m
cut

F
1
, . . . , F

n
, G

1
, . . . , G

m

1

1

F
1
, . . . , F

n⊥
F

1
, . . . , F

n
,⊥

F
1
, . . . F

n
, A , B

`
F

1
, . . . , F

n
, A`B

F
1
, . . . F

n
, A B,G

1
, . . . , G

m⊗
F

1
, . . . , F

n
, A⊗B,G

1
, . . . , G

m
,

F1, . . . , Fn, A ?F
1
, . . . , ?F

n
, !A

c!p
?F

1
, . . . , ?F

n
, !A

F
1
, . . . , F

n
?w

F
1
, . . . , F

n
, ?A

F
1
, . . . , F

n
, A, ?A

?b
F

1
, . . . , F

n
, ?A

F
1
, . . . , F

n
, A

∀
F

1
, . . . , F

n
,∀X.A

F
1
, . . . , F

n
, A[B/X]

∃ B is (!,?)-free
F

1
, . . . , F

n
,∃X.A

Figure 14. PLL∞2 rules: edges connect a formula in the conclusion
with its parent(s) in a premise.

Definition 20. Let D be a coderivation in PLL∞2 . It is weakly progressing if
every infinite branch contains infinitely many right premises of c!p-rules.

An occurrence of formula in a premise of a rule r is the parent of an occurrence
of a formula in the conclusion if they are connected according to the edges depicted
in Figure 14.

A !-thread (resp. ?-thread) in D is a maximal sequence (Ai)i∈I of !-formulas
(resp. ?-formulas) for some downward-closed I ⊆ N such that Ai+1 is the parent of
Ai for all i ∈ I. A !-thread (Ai)i∈I is progressing if Aj is in the conclusion of a
c!p for infinitely many j ∈ I.

D is progressing if every infinite branch contains a progressing !-thread. We
define pPLL∞2 (resp. wpPLL∞2) as the set of progressing (resp. weakly progressing)
coderivations in PLL∞2 .

Remark 21. Clearly, any progressing coderivation is weakly progressing too, but
the converse fails (Example 22), therefore pPLL∞2 ⊊ wpPLL∞2 . Moreover, the main
branch of any nwb contains by definition a progressing !-thread of its principal
formula.

Example 22. Coderivations in Figure 10 are not weakly progressing (hence, not
progressing): the rightmost branch of D⊥, i.e., the branch {ϵ, 2, 22, . . .}, and the
unique branch of D? are infinite and contain no c!p-rules. In contrast, the nwb
c!p(i0,...,in,...) in Example 19 is progressing by Remark 21, since its main branch

is the only infinite branch. Below, a regular, weakly progressing but not pro-
gressing coderivation (!X in the conclusion of c!p is a cut-formula, so the branch
{ϵ, 2, 21, 212, 2121, . . . } is infinite but has no progressing !-thread).

ax

X, X⊥

ax

X, X⊥

...
c!p

?X⊥, !X
ax

?X⊥, !X
cut

?X⊥, !X
c!p

?X⊥, !X
ax

?X⊥, !X
cut

?X⊥ , !X
c!p

?X⊥ , !X

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS15

Lemma 23. Let Γ be a sequent. Then, ⊢PLL2
Γ if and only if ⊢wpPLL∞

2
Γ.

Proof. Given D ∈ PLL2, D• ∈ PLL∞2 preserves the conclusion and is progressing,
hence weakly progressing (see Remark 21). Conversely, given a weakly progressing
coderivation D, we define a derivation Df ∈ PLL2 with the same conclusion by
applying, bottom-up, the translation: D

Γ′
r
Γ


f

:=

Df

Γ′
r
Γ

 D1

Γ1

D2

Γ2
r

Γ


f

:=

D1
f

Γ1

D2
f

Γ2
r

Γ

 D

Γ, A

D′

?Γ, !A
c!p

?Γ, !A


f

:=

Df

Γ, A
f!p

?Γ, !A

with r ̸= c!p. Note that the derivation Df is well-defined because D is weakly
progressing. □

Corollary 24. The empty sequent is not provable in wpPLL∞2 (and hence in
pPLL∞2).

Proof. If the empty sequent were provable in wpPLL∞2 , then there would be a cut-
free derivation D ∈ PLL2 of the empty sequent by Lemma 23 and Theorem 9, but
this is impossible since cut is the only rule in PLL2 that could have the empty
sequent in its conclusion. □

4.3. Recovering (weak forms of) regularity. The progressing criterion cannot
capture the finiteness condition of the rule ib!p in the derivations in nuPLL2. By
means of example, consider the nwb below, which is progressive but cannot be the
image of the rule ib!p via (·)• (see Figure 11) since {Di | i ∈ N} is infinite.

(4)
D0

!B

D1

!B

Dn

!B

...
c!p

!!B
c!p

...
c!p

!!B
c!p

!!B

with Di = c!p(1,...,1︸ ︷︷ ︸
i

,0,...) for each i ∈ N.

To identify in pPLL∞2 the coderivations corresponding to derivations in nuPLL2
and in PLL2 via the translations (·)• and (·)◦, respectively, we need additional
conditions.

Definition 25. A coderivation is weakly regular if it has only finitely many
distinct sub-coderivations whose conclusions are left premises of c!p-rules; it is
finitely expandable if any branch contains finitely many cut and ?b rules. We
denote by wrPLL∞2 (resp. rPLL∞2) the set of weakly regular (resp. regular) and
finitely expandable coderivations in pPLL∞2 .

Remark 26. Regularity implies weak regularity and the converse fails as shown
in Example 27 below, therefore rPLL∞2 ⊊ wrPLL∞2 . Moreover, D∈ PLL∞2 is regular
(resp. weakly regular) if and only if any nwb in D is periodic (resp. has finite
support).

Example 27. Coderivations D⊥ and D? in Figure 10 are not finitely expandable,
as their infinite branch has infinitely many cut or ?b, but they are weakly regular,
since they have no c!p rules. The coderivation in (4) is not weakly regular because
{Di | i ∈ N} is infinite.

16NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

An example of a weakly regular but not regular coderivation is the nwb c!p(i0,...,in,...)
in Example 19 when the infinite sequence (ij)j∈N ∈ {0,1}ω is not periodic: in each
rule c!p there, the left premise can only be 0 or 1 (so the nwb is weakly regular), but
the right premise is a distinct coderivation (so the nwb is not regular). Moreover,
that nwb is finitely expandable since it contains no ?b or cut.

By inspecting the steps in Figures 4, 7 and 13, we prove the following preserva-
tions.

Proposition 28. Cut elimination preserves weak-regularity, regularity and finite
expandability. Therefore, if D ∈ X with X ∈ {rPLL∞2 ,wrPLL∞2 } and D →cut D′,
then also D′ ∈ X.

Proof. By inspection of the cut-elimination steps defined in Figures 4, 7 and 13. □

Akin to linear logic, the depth of a coderivation is the maximal number of nested
nwbs.

Definition 29. Let D ∈ PLL∞2 . The nesting level of a sequent occurrence Γ
in D is the number nlD(Γ) of nodes below it that are the root of a call of a nwb.
The nesting level of a formula (occurrence) A in D, noted nlD(A), is the
nesting level of the sequent that contains that formula. The nesting level of a
rule r in D, noted nlD(r) (resp. of a sub-coderivation D′ of D, noted nlD(D′)),
is the nesting level of the conclusion of r (resp. conclusion of D′).

The depth of D is d(D) := supr∈D{nlD(r)} ∈ N ∪ {∞}.

Remark 30. All calls of a nwb have the same nesting level. Moreover, each of the
sequents of its main branch have nesting level 0.

Cut-elimination →cut on PLL∞2 enjoys the following property.

Lemma 31. Let D,D′ ∈ PLL∞2 . If D →cut D′ then d(D) ≥ d(D′).

Proof. By inspection of the cut-elimination steps in Figures 4, 7 and 13. □

Lemma 32. If D ∈ pPLL∞2 then d(D) ∈ N.

Proof. If D had infinite depth, there would exist an infinite branch that goes left
at c!p infinitely often. This branch cannot contain a (progressing) !-thread. □

The sets rPLL∞2 and wrPLL∞2 are the non-wellfounded counterparts of PLL2 and
nuPLL2, respectively. Indeed, we have the following correspondence via the trans-
lations (·)◦ and (·)•.

Proposition 33.

(1) If D ∈ PLL2 (resp. D ∈ nuPLL2) with conclusion Γ, then D◦ ∈ rPLL∞2
(resp. D• ∈ wrPLL∞2) with conclusion Γ, and every c!p in D◦ (resp. D•)
belongs to a nwb.

(2) If D′ ∈ rPLL∞2 (resp. D′ ∈ wrPLL∞2) and every c!p in D′ belongs to a nwb,
then there is D ∈ PLL2 (resp. D ∈ nuPLL2) such that D◦ = D′ (resp.
D• = D′).

Proof. Item 1 is proven by straightforward induction on D ∈ PLL2 (resp. D ∈
nuPLL2). Concerning Item 2, by Lemma 32 we have d(D) ∈ N. We can then prove
the statement by induction on d(D). □

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS17

Progressing and weak progressing coincide in finite expandable coderivations.

Lemma 34. Let D ∈ PLL∞2 be finitely expandable. If D ∈ wpPLL∞2 then any
infinite branch contains the principal branch of a nwb. Moreover, D ∈ pPLL∞2 iff
D ∈ wpPLL∞2 .

Proof. Let D ∈ wpPLL∞2 be finitely expandable, and let B be an infinite branch in
D. By finite expandability there is h ∈ N such that B contains no conclusion of a
cut or ?b with height greater than h. Moreover, by weakly progressing there is an
infinite sequence h ≤ h0 < h1 < . . . < hn < . . . such that the sequent of B at height
hi has shape ?Γi, !Ai. By inspecting the rules in Figure 2, each such ?Γi, !Ai can be
either the conclusion of either a ?w or a c!p (with right premise ?Γi, !Ai). So, there
is a k large enough such that, for any i ≥ k, only the latter case applies (and, in
particular, Γi = Γ and Ai = A for some Γ, A). Therefore, hk is the root of a nwb.
This also shows D ∈ pPLL∞2 . By Remark 21, pPLL∞2 ⊆ wpPLL∞2 . □

Proposition 35. It is NL-decidable if a regular coderivation is in rPLL∞2 .

Proof. A regular coderivation is represented by a finite cyclic graph. By Lemma 34
checking progressiveness comes down to checking that no branch has infinitely many
occurrences of a particular rule, which in turn reduces to checking acyclicity for
this graph (see [38]). We conclude since checking acyclicity is a well-known coNL
problem, and coNL = NL[20]. □

Of course a similar decidability result cannot hold for wrPLL∞2 , this proof sys-
tem containing continuously many coderivations, as hinted by the nwb depicted
in Example 19.

4.4. Simulation results. We conclude this section by establishing a simulation
result showing that any function on boolean strings representable in nuPLL2 is also
representable in wrPLL∞2 , and similarly for PLL2 and rPLL∞2 .

Theorem 36 (Simulation). Let f : ({0,1}∗)n → {0,1}∗.
(1) If f is representable in nuPLL2, then it is also representable in wrPLL∞2 .
(2) If f is representable in PLL2, then it is also representable in rPLL∞2 .

Proof. We consider the translations (·)◦ from PLL2 to PLL∞2 , and (·)• from nuPLL2
to PLL∞2 in Figure 11. On the one hand, by Proposition 33 we have:

(1) If D ∈ nuPLL2 then D• ∈ wrPLL∞2 .
(2) If D ∈ PLL2 then D◦ ∈ rPLL∞2 .

On the other hand, it is easy to check that those translations satisfy the following
properties:

(4) If D1 ∈ nuPLL2 and D2 is obtained from D1 by applying a cut-elimination
step different from (f!p-vs-f!p) and (ib!p-vs-ib!p) then D•

1 →cut D•
2 .

(5) If D1 ∈ nuPLL2 and D2 is obtained from D1 by applying a cut-elimination
step different from (f!p-vs-f!p) then D◦

1 →cut D◦
2 .

Notice that the rules f!p and ib!p are mapped by (·)◦ and (·)• to a bottomless
sequence of rules. As a consequence, applications of the rules (f!p-vs-f!p) and
(ib!p-vs-ib!p) can only be simulated by infinitely many cut-elimination steps in
PLL∞2 .

18NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

Now, let f : S[] ⊸ n≥0. . . ⊸ S[] ⊸ S[] represent f : ({0,1}∗)n → {0,1}∗ in
nuPLL2 (the case for PLL2 is similar), and let s1, . . . , sn ∈ {0,1}∗. By hypothesis,
we have:

f

S[] ⊸ . . . ⊸ S[] ⊸ S[]

s1

S[]
⊸e

...

sn−1

S[]
⊸e

S[] ⊸ S[]

sn

S[]
⊸e

S[]

→∗
cut f(s1,...,sn)

S[]

Let σ := D = D0 →cut D1 →cut . . . →cut Dn = f(s1, . . . , sn) be the above cut-

elimination sequence, where f(s1, . . . , sn) is cut-free by definition. We now establish
the following fact about cut-elimination in nuPLL2:

(1) The cut-elimination steps for (f!p-vs-f!p) and (ib!p-vs-ib!p) commute with
any other cut-elimination step;

(2) IfD has !-free conclusion then either it is cut-free or it has a cut rule different
from (f!p-vs-f!p) and (ib!p-vs-ib!p).

Item 1 is straightforward by inspecting the cut-elimination rules for nuPLL2.
Concerning Item 2, let us suppose towards contradiction that there is a derivation
D ∈ nuPLL2 whose cut rules are all with shape (f!p-vs-f!p) and (ib!p-vs-ib!p). More-
over, let us suppose that D is not cut-free, and let h be the smallest height of a cut.
By assumption, this cut contains a !-formula in its conclusion. Now, by inspecting
the rules of nuPLL2 it is easy to see that any rule distinct from cut has a !-formula
in its conclusion whenever one of its premises has (recall that instantiation in the
∃ rule requires !-freeness). Since no cut rule has height strictly smaller than h it
follows that the conclusion of D contains a !-formula, contradicting our assumption.

Now, the two facts above allow us to conclude the existence of a cut-elimination
sequence fromD to f(s1, . . . , sn) free of reduction steps for (f!p-vs-f!p) and (ib!p-vs-ib!p),
so that we can conclude by applying Item 1, Item 2, and Item 4. Indeed, by Item 1,
we can rewrite σ into another sequence σ′ where all such cut-elimination steps
are postponed. In particular, this means that there is a derivation D′ such that
D = D′

0 →cut . . .D′
k and D′

k →cut . . . →cut D′
n = f(s1, . . . , sn), for some 0 ≤ k ≤ n

such that:

• D = D′
0 →cut . . .D′

k is free of cut-elimination steps (f!p-vs-f!p) and (ib!p-vs-ib!p),
• D′

k →cut . . . →cut D′
n = f(s1, . . . , sn) contains only cut-elimination steps

for (f!p-vs-f!p) and (ib!p-vs-ib!p).

Since f(s1, . . . , sn) is cut-free, we have k = n by Item 2. □

4.5. Approximating coderivations. In this subsection we introduce open coderiva-
tions, which approximate coderivations, and show a decomposition property for
finitely expandable and progressing coderivations.

Definition 37. We define the set of rules oPLL∞2 := PLL∞2 ∪ {hyp}, where hyp :=

hyp
Γ

for any sequent Γ.5 We will also refer to oPLL∞2 as the set of coderivations

5Previously introduced notions and definitions on coderivations extend to open coderivations
in the obvious way, e.g. the global conditions Definition 20 and Definition 25, as well as the

cut-elimination relation →cut.

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS19

over oPLL∞2 , which we call open coderivations. An open coderivation is normal
if no cut-elimination step can be applied to it, that is, if one premise of each cut is
a hyp. An open derivation is a derivation in oPLL∞2 .

Definition 38. Let D be an open coderivation, V = {ν1, . . . , νn} ⊆ {1, 2}∗ be a
finite set of mutually incomparable (w.r.t. the prefix order) nodes of D:

• Let {D′
i}1≤i≤n be a set of open coderivations where D′

i has the same con-
clusion as the subderivation Dνi of D. We denote by D(D′

1/ν1, . . . ,D′
n/νn),

the open coderivation obtained by replacing each Dνi
with D′

i.
• The pruning ofD over V is the open coderivation ⌊D⌋V = D(hyp/ν1, . . . , hyp/νn).
If D and D′ are two open coderivations, then we say that D is an approx-
imation of D′ (noted D ⪯ D′) iff D = ⌊D′⌋V for some V ⊆ {1, 2}∗. An
approximation is finite if it is an open derivation.

Cut-elimination steps essentially do not increase the size of open derivations,
hence:

Proposition 39 (Cubic bound on finite approxmations). Let Γ be a sequent. If D
be a finite approximation and

D = D0 →cut · · · →cut Dn

then n ∈ O(|D|3) and |Di| ∈ O(|D|3) for any i ∈ {0, . . . , n}. If moreover the
reduction sequence is maximal then Dn is cut free.

Proof. Let w be number of ?-formulas Γ and k be the number of c!p rules in D.
We define the weight of D as W(D) := |D| + wk and H(D) as the sum of the
heights of all subproofs of D whose root is an application of the cut rule. Commu-
tative cut-elimination steps D →cut D′ satisfy W(D′) = W(D) and H(D′) < H(D);
For non-commutative cut-elimination steps we have W(D′) < W(D). Since the
lexicograophic order over the pairs ⟨W(D),H(D)⟩ is wellfounded, we conclude that
there cannot be an infinite reduction path starting from D.

Now let D′ be a normal derivation such that D →n
cut D′. The number np,a of

principal cut-elimination steps is bounded by W(D). At the same time, the number
ni
c of commutative steps performed after the i-th principal is bounded by the square

of the maximum size of the proof during rewriting, which can be bounded by W(D).
Hence, we have:

n = np,a +
∑np,a

i=1 ni
c ≤ np,a + np,a

(
maxi{ni

c + 1}
)
≤

≤ np,a

(
maxi{ni

c + 1}
)
≤ W(D) · (W(D)2 + 1) ≤ 2W(D)3

We conclude since W(D) ∈ O(|D|). □

Progressing and finitely expandable coderivations can be approximated in a
canonical way.

Proposition 40. If D ∈ pPLL∞2 is finitely expandable, then there is a finite set
V ⊆ {1, 2}∗ of nodes of D such that ⌊D⌋V is a open derivation and each v ∈ V is
the root of a nwb in D.

Proof. By Lemma 34, there is a set V of nodes of D such that: (i) each node in V
is the root of a nwb, and (ii) any infinite branch of D contains a node in V. Thus,
⌊D⌋V must be finite by weak König’s lemma, and so is V. □

20NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

Definition 41. Let D ∈ pPLL∞2 be finitely expandable. The decomposition of
D is the (unique) set of nodes border(D) = {ν1, . . . , νk} with k ∈ N such that Dνi

is a nwb for all i ∈ {1, . . . , k} and base(D) := ⌊D⌋border(D) is a minimal (w.r.t. ⪯)
finite approximation.

5. Relational semantics for non-wellfounded proofs

Here we define a denotational model for oPLL∞2 based on the relational semantics,
which interprets an open coderivation as the union of the interpretations of its finite
approximations, as in [39].

The relational semantics interprets the exponentials by finite multisets, denoted
by brackets, e.g., [x1, . . . , xn]; + denotes the multiset union, Mf (X) denotes the set
of finite multisets over a set X. To correctly define the semantics of a coderivation,
we need to see sequents as finite sequence of formulas (taking their order into
account), which means that we have to add an exchange rule to oPLL∞2 to swap
the order of two consecutive formulas in a sequent.

Definition 42 (Reflexive object). We define D :=
⋃

n∈N Dn, where Dn is defined
by induction as follows:

D0 := {∗}
Dn+1 := D0 ∪ (Dn ×Dn) ∪Mf (Dn)

Definition 43. We associate with each formula A a set {{A}} defined as follows:

{{X}} := D {{A⊗B}} := {{A}} × {{B}}

{{1}} := {∗} {{!A}} := Mf ({{A}}){{
A⊥}} := {{A}} {{∀X.A}} := {{A}}

where D is as in Definition 42. For a sequent Γ = A1, . . . , An, we set {{Γ}} :=
{{A1 ` · · ·`An}}.

Given oPLL∞2 with conclusion Γ, we set {{D}} :=
⋃

n≥0 {{D}}n ⊆ {{Γ}}, where
{{D}}0 = ∅ and, for all i ∈ N \ {0}, {{D}}i is defined inductively according to
Figure 15.

Example 44. For the coderivations D⊥ and D? in Figure 10, {{D⊥}} = {{D?}} =
∅. For the derivations 0 and 1 in Figure 3, {{0}} = {((x, y), (x, y)) | x ∈ D}
and {{1}} = {((x, y), (y, x)) | x, y ∈ D}. For the coderivation c!p(i0,...,in,...) in

Example 19 (with ij ∈ {0,1} for all j ∈ N), the relation
{{

c!p(i0,...,in,...)

}}
is defined

as the set of all multisets of the form [((x1, y1), (z1, w1)), . . . , ((xn, yn), (zn, wn))]
with n ∈ N and xi, yi, zi, wi ∈ D such that xi = wi and yi = zi whenever i = 1,
and such that xi = zi and yi = wi whenever i = 0.

By straightforward inspection of the cut-elimination steps for oPLL∞2 we have:

Theorem 45 (Soundness). Let D ∈ oPLL∞2 . If D →cut D′, then {{D}} = {{D′}}.

6. Characterisation results

In this section we prove the fundamental result of this paper:

Theorem 46.

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS21

{{
ax

A,A⊥

}}
n

= { (x, x) x ∈ {{A}} }
{{

hyp
Γ

}}
n
= ∅


 D′

Γ
⊥

Γ,⊥




n

= { (x⃗, ∗) x⃗ ∈
{{

D′}}
n−1 }

{{
1
1

}}
n
= {∗}


 D′

Γ, A

D′′

∆, A⊥
cut

Γ,∆




n

=

{
(x⃗, y⃗) ∃z ∈ {{A}} s.t.

(x⃗, z) ∈
{{

D′}}
n−1

and
(z, y⃗) ∈

{{
D′′}}

n−1

}

 D′

Γ, A,B
`

Γ, A ` B




n

= { (x⃗, (y, z)) (x⃗, y, z) ∈
{{

D′}}
n−1 }


 D′

Γ, A

D′′

∆, B
⊗

Γ,∆, A⊗B




n

=

{
(x⃗, y⃗, (x, y))

(x⃗, x) ∈
{{

D′}}
n−1

and
(y⃗, y) ∈

{{
D′′}}

n−1

}

 D′

Γ
?w

Γ, ?A




n

= { (x⃗, []) x⃗ ∈
{{

D′}}
n−1 }


 D′

Γ, A, ?A
?b

Γ, ?A




n

= { (x⃗, [y] + µ) (x⃗, y, µ) ∈
{{

D′}}
n−1 }


 D′

Γ, A

D′′

?Γ, !A
c!p

?Γ, !A




n

=
{
([⃗], [])

}
∪

{
([x1] + µ1, . . . , [xk] + µk, [x] + µ)

(x1, . . . , xk, x) ∈
{{

D′}}
n−1

and
(µ1, . . . , µk, µ) ∈

{{
D′′}}

n−1

}

 D′

Γ, A
∀
Γ, ∀X.A




n

=


 D′

Γ, A[B/X]
∃

Γ, ∃X.A




n

= {{D′}}n−1

Figure 15. Inductive definition of the set {{D}}n, for n > 0.

(1) wrPLL∞2 = nuPLL2 = FP/poly;
(2) rPLL∞2 = PLL2 = FP.

where, with little abuse of notation, we identify proof systems with the classes
of functions they represent. The soundness theorem (i.e., wrPLL∞2 ⊆ FP/poly and
rPLL∞2 ⊆ FP) relies on a polynomial modulus of continuity for cut-elimination
(Lemma 55), from which we can extract a family of polynomial size circuits com-
puting that functions, which is uniform whenever the coderivation is regular. The
completeness theorem (i.e., FP/poly ⊆ wrPLL∞2 and FP ⊆ rPLL∞2) is established
by defining an encoding of a polytime Turing machine with (polynomial) advice in

22NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

a type system designed to express computation with access to bits of streams (The-
orem 75), and by translating the type system into nuPLL2 (Theorem 81), leveraging
on previous translations (Theorem 36).

6.1. Soundness. We start with the notions of exponential flow and the notion of
rank. Roughly, the rank of a coderivation carries information about the maximum
number of nwb calls that can be “extracted” by the cut-elimination step (c!p-vs-?b).

Definition 47 (Exponential flow and rank). Let D ∈ wrPLL∞2 The exponential
graph of D, written G(D), is a directed acyclic graph whose nodes are the ?-
formulas and the !-formulas of D with nesting level 0, and such that there is an
edge from a node A to a node B whenever:

• A and B are the conclusions of an ax rule with A = ?C⊥, B = !C;
• A and B are conclusions of a c!p rule with A = ?C⊥, B = !C;
• A and B are occurrences of the same ?-formula, and A is the principal
formula of a ?b rule whose active formula is B;

• A and B are the cut-formulas of a cut rule with A = !C and B = ?C⊥;
• A and B are ?-formulas (resp. !-formulas) in a context and B is an imme-
diate ancestor of A (A is an immediate ancestor of B).

An exponential flow is a finite directed path in G(D). Exponential flows range
over ϕ. The rank of an exponential flow ϕ, written rkD(ϕ), is the number of
principal formulas of a ?b rule crossed by the path. Given A ∈ G(D) an exponential
formula such that nlD(A) = 0, we denote by rkD(A) ∈ N∪{∞} the supremum of the
ranks the exponential flows starting from A Finally, we denote by rk(D) ∈ N∪{∞}
the supremum of the ranks the exponential flows in D.

Proposition 48. Let D ∈ wrPLL∞2 and A be an exponential formula such that
nlD(A) = 0. Then rkD(A) ∈ N and rk(D) ∈ N.

Proof. It is a consequence of the fact that only formulas with nesting level 0 are in
G(D), and byProposition 40 only finitely many formulas of them are principal for
a ?b rule. □

Proposition 49. Let D ∈ wrPLL∞2 with conclusion Γ !-free. Then any exponential
flow ϕ in D ends with the principal formula of a ?w rule.

Proof. It follows by inspecting the inference rules for wrPLL∞2 , using the fact that
instantiations of ∃ are !, ?-free. □

Proposition 50. Let D ∈ wrPLL∞2 and let D →cut D′. Then, for any occurrence
of a !-formula A ∈ G(D) if A ∈ G(D′) then rkD′(A) ≤ rkD(A).

Proof. The only interesting case is when the cut-elimination step is applied to the
cut (c!p-vs-?b). By representing bundles of edges with dashed lines, we can illustrate
the edges of G(D) and G(D′) affected by that cut-elimination step as follows:

Γ, A

...
c!p

?Γ, !A
c!p

?Γ, !A

∆, A⊥, ?A⊥
?b

∆, ?A⊥
cut

?Γ,∆

→cut Γ, A

...
c!p

?Γ, !A ∆, A⊥, ?A⊥
cut

?Γ,∆, A⊥
cut

Γ, ?Γ,∆
?b

?Γ,∆

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS23

where we use colours to distinguish between occurrences of the same formula. Fo-
cusing on !-formulas, we notice that !A is in D but not in D′. On the other hand,
!A is in both coderivations and satisfies rkD′(!A) ≤ rkD(!A), as the ?b rule in D
has been replaced by a (possibly empty) series of ?b rules, each one applied to a
distinct formula of ?Γ. □

We now define a notion of (finite) size for coderivations in wrPLL∞2 , relying on ??
and by Remark 26.

Definition 51 (Cosize). Let D ∈ wrPLL∞2 , and border(D) = {ν1, . . . , νk} be its
decomposition, with Si = Dνi

. We define the cosize of D, written ||D||, by
induction on the depth of D. If d(D) = 0 then D = base(D) and we set ||D|| := |D|.
Otherwise d(D) > 0, and

||D|| := |base(D)|+
k∑

i≥1

∑
D′∈{Sj(0),Sj(1),...}

||D′||

We also define the maximal size at depth d, written ||D||d with 0 ≤ d ≤ d(D),
by induction on d:

• ||D||0 = |base(D)|,
• ||D||d+1 = maxki=1 maxD′∈{Sj(0),Sj(1),...} ||D′||d

We now define a particular notion of finite approximation for coderivations called
“truncation”.

Definition 52 (Finite nwb and truncation). We set

!hyp
?Γ, !A

:=
hyp

Γ, A
hyp

?Γ, !A
c!p

?Γ, !A

A finite non-wellfounded promotion, Fnwb, is any coderivation of the form

D0

Γ, A

D1

Γ, A

Dn−1

Γ, A
!hyp

?Γ, !A
c!p

...
c!p

?Γ, !A
c!p

?Γ, !A

We denote the above Fnwb with c!p⟨D0,D1,...,Dn−1⟩. Finite non-wellfounded pro-

motions will range over F. If F = c!p⟨D0,D1,...,Dn−1⟩ we may write F(i) to denote
Di.

Let D ∈ wrPLL∞2 , let border(D) = {ν1, . . . , νk} be its decomposition, and let
Si = Dνi

. For any n > 0 we define the n-truncation of D, written ⌊D⌋n, by
induction on d(D):

• If d(D) = 0 then we set ⌊D⌋n := D.
• If d(D) > 0 then we set ⌊D⌋n := base(D)(F1/ν1, . . . ,Fk/νk) where, for all
1 ≤ i ≤ k, Fi = c!p⟨⌊Si(0)⌋n,⌊Si(1)⌋n,...,⌊Si(n−1)⌋n⟩.

24NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

Remark 53. Notice that, for Γ = ∅, the rule !hyp is the co-weakening rule (!w)
from differential linear logic [40]. Notice that, as opposed to the rule hyp, whose

interpretation is the empty set, we have

{{
!hyp

!A

}}
= { ([⃗], []) }.

Clearly, Fnwbs are approximations of nwb. Also, as ⌊D⌋n is finite, we can relate
its size with the cosize of D:

Proposition 54. Let D ∈ wrPLL∞2 . Then

|⌊D⌋n| ∈ O(nd(D)+1 · ||D||d(D)+1)

Proof. Let border(D) = {ν1, . . . , νk} be the decomposition of D, with Si = Dνi . We
prove the statement by induction on d(D). If d(D) = 0 then |⌊D⌋n| = |D| = ||D||.
If d(D) = d > 0 then ||D|| := |base(D)| +

∑k
i≥1

∑
D′∈{Sj(0),Sj(1),...} ||D

′||. By

induction hypothesis, |⌊Si(j)⌋n| ∈ O(nd · ||Si(j)||d), and so |⌊Si(j)⌋n| ∈ O(nd ·
||D||d). Moreover, k ≤ ||D||. This means that |⌊D⌋n| ∈ O(||D||+n · ||D||·nd · ||D||d),
so that |⌊D⌋n| ∈ O(nd+1 · ||D||d+1). □

Lemma 55 (Polynomial modulus of continuity). Let D ∈ wrPLL∞2 be a coderivation
of a !-free sequent. Then, for some polynomial p : N → N depending solely on d(D),
⌊D⌋p(||D||) rewrites in a finite number of steps to a cut-free hyp-free derivation.

Proof. We define a finite cut-elimination strategy on D that applies only cut-
elimination steps to cut rules with nesting level 0 (hence, it never reduces (c!p-vs-c!p)
steps) and we show that, for some polynomial p : N → N depending solely on d(D),
only nodes in ⌊D⌋p(||D||) are visited by the cut-elimination steps.

The cut-elimination strategy is divided into d(D) + 1 rounds: for any 0 ≤ d ≤
d(D) the d-th round rewrites a coderivation Dd to a coderivation Dd+1, where
D0 := D and Dd(D) = f(D). Let border(Dd) = {νd1 , . . . , νdkd

} be the decomposition

of Dd, with Sd
i = Dd

νd
i
. Each round d is divided in two phases.

• Phase 1. Starting from Dd, we eliminate all linear, commutative and
exponential cuts with nesting level 0 except those with cut-formula the
principal !-formula of a nwb Sd

i . We obtain a coderivation D(d).
• Phase 2. We apply to D(d) exponential cut-elimination steps and com-
muting steps to cut rules with cut-formula the principal !-formula of a nwb
Sd

i .

Let rk := max
d(D)
d=0 rk(Dd) + 1. First, for all 0 ≤ d ≤ d(D), we show by induction

on d(Dd) that ⌊Dd⌋rk rewrites to a cut-free and hyp-free derivation:

• if d(Dd) = 0 then d = d(D) and ⌊Dd⌋rk = Dd rewrites to a cut-free (and
hyp-free) derivation.

• Let us suppose that d(Dd) > 0. Phase 1 only affects base(Dd). In par-
ticular, d(Dd) = d(D(d)). Moreover, since no linear or commuting cuts are
left, and Γ is !-free, D(d) contains exactly kd cuts with nesting level 0, say
rd1, . . . , r

d
kd
, where rdi has the principal !-formula of Sd

i as cut-formula. Let

us now consider Phase 2. Let (!A1, ?A
⊥
1), . . . , (!An, ?A

⊥
n) be the list of

pairs of cut-formulas of a cut-chain starting from rdi . We notice that:
– ?A⊥

1 , . . . , ?A
⊥
n enumerates (with possible repetitions) ?-formulas in the

same exponential flow, sat ϕi.

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS25

– !A1, . . . , !An enumerates (with possible repetitions) !-formulas in the
same nwb, say Sd

i .
So, by applying Proposition 49 and Proposition 50 we obtain:
(1) D(d)(Fd

1/ν
d
1 , . . . ,F

d
kd
/νdkd

) →∗
cut Dd+1, where Fd

i = c!p⟨Sd
i (0),S

d
i (1),...,S

d
i (rk)⟩.

(2) d(Dd) = d(D(d))− 1 = d(Dd+1)− 1.
By Item 2 and the induction hypothesis we have ⌊Dd+1⌋rk →∗

cut f(D).
By Item 1 we have ⌊Dd⌋rk →∗

cut ⌊D(d)⌋rk →∗
cut ⌊Dd+1⌋rk.

We now show that there is some k > 0 depending solely on d(D) such that
||Dd||0 ∈ O(||D||k) for any 0 ≤ d ≤ d(D). Since rk(Dd) ≤ |base(Dd)| = ||Dd||0 this
provides a bound to the maximum number of calls of a nwb that will be required to
compute the input, from which we can conclude that ⌊D⌋||D||k rewrites to a cut-free
and hyp-free derivation. We actually show by induction on 0 ≤ d ≤ d(D) something
stronger:

||Dd||0 ∈ O

(
d∏

i=0

||D0||3
d+1−i·2d−i

i

)

Notice that this would be enough to conclude, as by Lemma 31,we have:

||Dd||0 ∈ O

(
d∏

i=0

||D0||3
d+1−i·2d−i

i

)
= O

d(D)∏
i=0

||D||3
d+1−i·2d−i

i

 = O
(
d(D) · ||D||3

d+1−i·2d−i
)

The case d = 0 is trivial. Concerning the inductive step, we first observe that,
by Item 1 we have:

||Dd+1||0 ∈ O
(
||D(d)||0 +

∑kd

i=0

∑rk(Dd)
j=0 ||Sd

i (j)||0
)

= O
(
||D(d)||0 +

∑kd

i=0 +rk(D(d)) · ||D(d)||1
)

= O
(
||D(d)||0 +

∑kd

i=0 +||D(d)||0 · ||D(d)||1
)

= O
(
||D(d)||0 + ||D(d)||20 · ||D(d)||1

)
= O

(
||D(d)||20 · ||D(d)||1

)

since kd, rk(D(d)) ≤ ||D(d)||0 and ||Sd
i (j)||0 ≤ ||D(d)||1. Moreover, by Proposition 39

we have ||D(d)||0 ∈ O(||Dd||30). Finally, we notice that ||D(d)||1 = ||Dd||1 = ||D0||d+1

as the rules of D0 with nesting level d are untouched by the first d − 1 rounds of
cut-elimination and each round decreases the nesting level. By putting everything

26NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

together we have:

||Dd+1||0 ∈ O
(
||D(d)||20 · ||D(d)||1

)
= O

(
||D(d)||20 · ||D0||d+1

)
= O

((
||Dd||20 · ||D0||d+1

)3)
= O

(((∏d
i=0 ||D0||3d+1−i·2d−i

i

)2
· ||D0||d+1

)3
)

= O
((∏d

i=0 ||D0||3d+1−i·2d+1−i

i · ||D0||d+1

)3)
= O

((∏d
i=0 ||D0||3d+1−i·2d+1−i

i

)3
· ||D0||3d+1

)
= O

(∏d
i=0 ||D0||3d+2−i·2d+1−i

i · ||D0||3d+1

)
= O

(∏d+1
i=0 ||D0||3d+2−i·2d+1−i

i

)
This concludes the proof. □

We can now state and prove the soundness theorem.

Theorem 56 (Soundness). Let f : ({0,1}∗)n → {0,1}∗:
(1) If f is representable in wrPLL∞2 then f ∈ FP/poly;
(2) If f is representable in rPLL∞2 then f ∈ FP.

Proof. We only show the case where f is unary for the sake of simplicity. Let
f ∈ wrPLL∞2 represent f , and let us consider the following coderivation, with
s = b1, . . . , bn ∈ {0,1}∗:

Df(s) :=

s

S[]

f

S[]
⊥
,S[]

cut
S[]

By Lemma 55 there are D0,D1, . . . ,Dm such that:

⌊Df(s)⌋c·||Df(s)||k = D0 →cut D1 →cut . . . →cut Dm = f(s)

for some constant c > 0, and for some k > 0 depending solely on d(Df(s)) = d(f)
(since d(s) = 0). In particular, ||Df(s)|| ∈ O(||s||) = O(|s|) = O(|s|), where |s| is
the size of the string s. So, we have:

⌊Df(s)⌋c·|s|k = D0 →cut D1 →cut . . . →cut Dm = f(s)

for some constant c > 0 and some k > 0 depending solely on d(f). Moreover:

• By Proposition 54 we have

|⌊Df(s)⌋n| ∈ O(|s|k·d(Df(s))+1·||Df(s)||d(Df(s))+1) = O(|s|k·d(Df)+1·|s|d(Df)+1) = O(|s|h)

for some h > 0 depending solely on d(f).

• By Proposition 39, we have both m ∈ O(|s|3h) and |Di| ∈ O(|s|3h).

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS27

This means that we can construct a polysize family of circuits C = (Cn)n≥0 such
that, for any n ≥ 0, on input s = b1, . . . , bn ∈ {0,1}∗, Cn(s) evaluates Df(s) to f(s)

and returns f(s). Therefore, f ∈ FP/poly. Suppose now that f is representable
in rPLL∞2 . This means that f is regular, and so the function n 7→ Cn can be
constructed uniformly by a polytime Turing machine. Therefore, f ∈ FP. □

6.2. Completeness. In this subsection we introduce the type system nuPTA2,
which is able to express computation over streams of data, and we show that nuPTA2

is complete for FP/poly (Theorem 75.1). By inspecting the proof of completeness,
we will infer that the subsystem of nuPTA2 without typing rules for streams, called
PTA2, is complete for FP (Theorem 75.2). As a matter of convenience, nuPTA2 is
endowed with a special modality, denoted “ω”, to lift data of type σ to streams over
those data. The proof of completeness is based on the encoding of Turing machines
given in [30, 31].

6.3. The type assigment systems PTA2 and nuPTA2.

Definition 57. [Λstream] We will denote with Λstream the set of terms generated by
the following grammar:

M := x | I | let I = x in M | M ⊗M | let x1 ⊗ x2 = M in M
λx.M | MM | M | discard | pop

where x ranges over a countable set of term variables and M = M(0) ::M(1) :: . . .
is a stream of terms. Meta level substitution for terms, written M [N/x], is defined
in the standard way. The reduction rules for Λstream are defined as follows:

(λx.M)N →β M [N/x]

let I = I in M →β M

let x1 ⊗ x2 = M ⊗N in P →β P [M/x1, N/x2]

popM →β hd(M)⊗ tl(M)

discard (M ⊗M) →β M

and apply to any context, where hd(M) and tl(M) are meta operations returning,
respectively, the head of M and the tail of M. With →∗

β (resp. =β) we denote as

usual the reflexive (resp. symmetric) and transitive closure of →β .

The n-ary tensor product (with n ≥ 3) can be easily defined from the binary one
as follows:

M1 ⊗ . . .⊗Mn := (M1 ⊗ . . .⊗Mn−1)⊗Mn

σ1 ⊗ . . .⊗ σn := (σ1 ⊗ . . .⊗ σn−1)⊗ σn

let x1 ⊗ . . .⊗ xn = z in M := let y ⊗ xn = z in (let x1 ⊗ . . .⊗ xn−1 = y in M)

We set σn := σ ⊗ n. . .⊗ σ.
The types of PTA2 and nuPTA2 are based on the so-called essential types from [31].

Definition 58 (PTA2 and nuPTA2). The essential types are generated by the
following grammar:

A := X | 1 | σ ⊸ A | ∀X.A
σ := A | σ ⊗ σ | !σ | ωσ

28NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

ax
x : A ⊢ x : A

Γ, x : σ ⊢ M : B
⊸i

Γ ⊢ λx.M : σ ⊸ B

Γ ⊢ M : σ ⊸ B ∆ ⊢ N : σ
⊸e

Γ,∆ ⊢ MN : B

Ii
⊢ I : 1

Γ ⊢ N : 1 ∆ ⊢ M : σ
Ie
Γ,∆ ⊢ let I = N in M : σ

Γ ⊢ M : σ ∆ ⊢ N : τ
⊗i

Γ,∆ ⊢ M ⊗N : σ ⊗ τ

Γ ⊢ M ⊗N : σ ⊗ τ ∆, x : σ, y : τ ⊢ P : C
⊗e

Γ,∆ ⊢ let x⊗ y = M ⊗N in P : C

Γ ⊢ M : A
∀i

Γ ⊢ M : ∀X.A

Γ ⊢ M : ∀X.A
∀e B is (!, ω)-free

Γ ⊢ M : A[B/X]

Γ ⊢ M : σ
f!p

!Γ ⊢ M : !σ

Γ ⊢ M : τ
?w

Γ, x : !σ ⊢ M : τ

Γ, y : σ, z : !σ ⊢ M : τ
?b
Γ, x : !σ ⊢ M [x/y, x/z] : τ

⊢ M : (0) : σ ⊢ M : (1) : σ . . . ⊢ M : (n) : σ . . .
stream (⋆)

⊢ M : ωσ

discard
⊢ discard : σ ⊗ ωσ ⊸ σ

pop
⊢ pop : ωσ ⊸ σ ⊗ ωσ

Figure 16. Typing rules for system nuPTA2.

where X ranges over a countable set of type variables. We denote with σ[τ/X] the
standard meta level substitution of τ for the free occurrences of the type variable
X in σ. A context is a set with shape x1 : σ1, . . . , xn : σn for some n ≥ 0, where
xi are term variables and σi are types. Context range over Γ,∆,Σ, With !Γ we
denote a context of the form x1 : !σ1, . . . , xn : !σn. The type assignment system for
Λstream, called nuPTA2, derives judgements of the form Γ ⊢ M : σ and is given by
the typing rules in Figure 16 with the following condition on the rule stream:

(⋆) ♯{M(0),M(1), . . .} ∈ N

the restriction of nuPTA2 without the typing rules stream, discard and pop is called
PTA2. We write Γ ⊢nuPTA2 M : σ (resp. Γ ⊢PTA2 M : σ) when the judgement
Γ ⊢ M : σ is derivable in nuPTA2 (resp. PTA2). We simply write Γ ⊢ M : σ when
the judgement is derivable in both systems. If D is a typing derivation of Γ ⊢ M : σ
then we write D : Γ ⊢ M : σ.

Proposition 59. If D : Γ ⊢ M : !σ then Γ = !Γ′ and D is obtained from D′ by
applying f!p followed by a series of applications of ?w and ?b.

Lemma 60 (Substitution). If D1 : Γ, x : τ ⊢ M : σ and D2 : ∆ ⊢ N : τ then there
is a typing derivation S(D1,D2) of Γ,∆ ⊢ M [N/x] : σ.

Proof. The proof is by induction the the typing derivation D1 and the complexity
of τ . We only consider the case where D1 is obtained from D′

1 by applying a ?b
rule. This means that M = M ′[x/y, x/z] and τ = !τ ′. So, D′

1 has shape:

D′
1

Γ, y : τ ′, z : !τ ′ ⊢ M ′ : σ
?b
Γ, x : !τ ′ ⊢ M ′[x/y, x/z] : σ

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS29

By Proposition 59 we have that ∆ = !Σ and

D2 :=

D′
2

!Σ′ ⊢ N ′ : !τ ′
?b,?w

!Σ ⊢ N : !τ ′
D′

2 :=

D′′
2

Σ′ ⊢ N ′ : τ ′
f!p

!Σ′ ⊢ N ′ : !τ ′

By induction hypothesis on D′
1 and D′

2 we obtain a typing derivation S(D′
1,D′

2)
of Γ, !Σ′ ⊢ M ′[N ′/z]⟩ : σ. By applying the induction hypothesis again, we have a
typing derivation S(S(D′

1,D′
2),D′′

2) of Γ,Σ
′, !Σ′ ⊢ M ′[N ′/z,N ′/y] : σ. We conclude

by applying a series of ?b rules and ?w rules. □

Proposition 61 (Subject reduction). Let D : Γ ⊢ M : A. If M →β M ′ then there
is D′ such that D′ : Γ ⊢ M ′ : A.

Proof. It suffices to check that the reduction rules given in Definition 57 preserve
types. We only consider the case M = (λx.P)N and M ′ = P [N/x]. The proof is
by induction on D. We only show the case where the last rule of D′ is ⊸e, i.e. we
have

D1

Γ ⊢ λx.P : σ ⊸ B

D2

∆ ⊢ N : σ
⊸e

Γ,∆ ⊢ (λx.P)N : B

By inspecting the typing rules, it is easy to check that D1 has the following shape:

D′
1

Γ′, x : σ ⊢ P ′ : B
⊸i

Γ′ ⊢ λx.P ′ : σ ⊸ B
?b,?w

Γ ⊢ λx.P : σ ⊸ B

We apply Lemma 60 and we obtain the following derivation:

S(D′
1,D2)

Γ′,∆ ⊢ P ′[N/x] : B
?b,?w

Γ,∆ ⊢ P [N/x] : B

□

6.4. Definability and basic data types in PTA2 and nuPTA2. We generalise
the usual notion of lambda definability given in [41] to different kinds of input data,
along the lines of [31].

Definition 62 (Representability). Let f : I1× . . .×In → O be a total function and
let the elements o ∈ O and ij ∈ Ij for 0 ≤ j ≤ n be encoded by terms o and ij such

that ⊢ o : O and ⊢ ij : Ij . Then, f is representable in nuPTA2 (resp. PTA2) if there

is a term f ∈ Λstream such that ⊢ f : I1 → . . . → In → O in nuPTA2 (resp. PTA2)
and

f i1 . . . in = o ⇐⇒ f i1 . . . in →∗
β o

30NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

We adopt the usual notational convention Mn N (n ≥ 0) defined inductively as
M0(N) := N and Mn+1(N) := M(Mn(N)). We also set M ◦ N := λz.M(Nz),
which generalises to the n-ary case M1 ◦ . . . ◦Mn := λz.M1(M2(. . . (Mnz))).

In what follows we show encodings and properties of basic data types (such as
booleans, boolean strings and natural numbers) and operations on those data types
(such as iterations and polynomials).

Definition 63 (Booleans). We define the type of Booleans as B := ∀X.(X⊗X) ⊸
X ⊗X. We also define the boolean values and basic operations on them as follows:

1 := λx.λy.x⊗ y : B

0 := λx.λy.y ⊗ x : B

WB := λb.let x1 ⊗ x2 = b(I⊗ I) in let I = x2 in x1 : B ⊸ 1

π2
1 := λx.let x1 ⊗ x2 = x in let I = WB x2 in x1 : B⊗B ⊸ B

CB := λb.π2
1(b(0⊗ 0)⊗ (1⊗ 1)) : B ⊸ B⊗B

¬ := λb.λx.λy.b(y ⊗ x) : B ⊸ B

∨ := λb1.λb2.π
2
1(b10 b2) : B⊗B ⊸ B

A consequence of the above encoding is the following:

Proposition 64 (Functional completeness). Each boolean function f : Bn → Bm

with n ≥ 0, m > 0 can be defined by a term f ∈ Λstream such that ⊢ f : Bn ⊸ Bm.

Definition 65 (Π1 and eΠ1 types [30]). Let A be a type build from 1,⊗,⊸,∀.
We say that A is Π1 if ∀-types occur only positively in it. We say that A is eΠ1

if it contains positive occurrences of ∀-types or negative occurrences of inhabited
∀-types.

Proposition 66 (Linear weakening [30]). For any closed type A ∈ eΠ1 there is a
term WA in the linear λ-calculus that inhabits A ⊸ 1.

Remark 67 (Conditional). The above proposition allows us to derive the following
conditional rule for any closed type A ∈ eΠ1:

⊢ R : A ⊢ L : A
cond

x : B ⊢ if x thenR elseL : A

where if x thenR elseL := π2
1(xRL). It is easy to check that the following reduction

hold:
if 1 thenR elseL →∗

β R

if 0 thenR elseL →∗
β L

Definition 68 (Natural numbers and boolean strings). Natural numbers and
Boolean string are encoded by the following types:

N := ∀X.!(X ⊸ X) ⊸ X ⊸ X
S := ∀X.!(B ⊸ X ⊸ X) ⊸ X ⊸ X

We will mainly use a parametric version of the above types. For any linear type A
we set:

N[A] := !(A ⊸ A) ⊸ A ⊸ A
S[A] := !(B ⊸ A ⊸ A) ⊸ A ⊸ A

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS31

We write N[] to denote N[A] for some A, and similarly for S. The encoding of
boolean strings and natural numbers are defined as follows, for s = b1 · · · bn ∈
{0, 1}∗:

s := λf.λz.f sn(f sn−1(. . . (f s1 z) . . .))

n := λf.λz.fnz

We define the term length that, when applied to the encoding of a string, returns
the encoding of its length:

length := λs.λf.s(λx.λy.let I = WB x in (f)y) : S[A] ⊸ N[A]

It is easy to check that, if s = b1 · · · bn then

length s →∗
β n

Remark 69. In type systems based on second-order linear logic, functions over
boolean strings and natural numbers are typically encoded by terms of type S ⊸ S
and N ⊸ N, where S and N are as in Definition 68. However, these types are
too restrictive for establishing our completeness theorem (Theorem 75). Indeed,
to represent a Turing machine we need to iterate (the encoding of) a transition
function Tr : TM ⊸ TM (where TM is the type of Turing machine configurations)
as many times as a given natural number n. This can be done by applying n to
Tr, which can be typed using the rule ∀e turning N into its instantiation N[TM].
However, TM makes crucial use of ! modalities, so that we cannot legally apply
∀e. Following [27], we overcome this issue by switching to the types S[] and N[], so
that the term nTr is typable as long as n has type N[TM].

Definition 70 (Iteration). We derive the iterator on natural numbers with result
type A as follows:

!Γ ⊢ S : !(A ⊸ A) ∆ ⊢ B : A
iterN

!Γ,∆, n : N[A] ⊢ iterN nS B : A

where iterN :=λn.λs.λb.nsb. It is easy to check that the reduction below holds:

iterN nS B →∗
β SnB

Similarly, we define the iterator on boolean strings with result type A:

!Γ ⊢ S0 : !(A ⊸ A) !Γ ⊢ S1 : !(A ⊸ A) ∆ ⊢ B : A
iterS

!!Γ,∆, n : S[A] ⊢ iterS nS0 S1 : A

where iterS :=λ sλt.λu.λb.stub. It is easy to check that the reduction below holds:

iterN b1 · · · bn S0 S1B →∗
β Sbn . . . Sb1B

Remark 71 (Tiering). Let σ be a type. We define Nσ[d] and Sσ[d] by induction
on d ≥ 0:

Nσ[0] := σ
Nσ[d+ 1] := Nσ[Nσ[d]]

Sσ[0] := σ
Sσ[d+ 1] := Sσ[Sσ[d]]

When σ is clear from the context, we simply write N[d] and S[d]. We set:

downdN := λx.iterN x succ 0 : N[d+ 1] ⊸ N[d]

downdS := λx.iterN x (λb.λs.λc.λz.cb(scz))ϵ : N[d+ 1] ⊸ N[d]

Notice that:
downdN n →∗

β n

downdS n →∗
β n

32NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

Definition 72 (Successor, addition, multiplication). Successor, addition and mul-
tiplication can be represented as follows:

succ := λn.λf.λz.n(f)(fz) : N[i] ⊸ N[i]
add := λn.λm.iterN n (succ)m : N[i+ 1] ⊸ N[i] ⊸ N[i]
mult := λn.λm.iterN m (λy.addn y) 0 : !N[i+ 1] ⊸ N[i+ 1] ⊸ N[i]

Theorem 73 (Polynomial completeness). Let p(x) : N → N be a polynomial, and
let deg(p) be its degree. Then there is a term p representing p typable, for any i, as

x : !deg(p)−1N[deg(p) + i] ⊢ p : N[i]

Proof. W.l.o.g. we will prove the statement for i = 0. Consider a polynomial
p(x) : N → N in Horner normal form, i.e., p(x) = a0+x(a1+x(. . . (an−1+xan) . . .)).
We show by induction on deg(p) something stronger, i.e., for i > 0 it is derivable:

(5) x0 : N[1], x1 : !N[2], . . . , xdeg(p∗)−1 : !deg(p
∗)−1N[deg(p∗)] ⊢ p∗ : N

where p∗ = a0+x0(a1+x1(. . . (adeg p∗−2+xdeg(p∗)−1adeg(p∗)−1) . . .)). If deg(p
∗) = 1

then p∗ = a0+x0a1, and we simply set p∗ := add a0 (mult a1 x0). If deg(p
∗) > 0 then

p∗ = a0+x0q
∗ with q∗ := a1+x1(a2+x2(. . . (adeg(p∗)−2+xdeg(p∗)−1adeg(p∗)−1) . . .)).

By induction hypothesis we have that q∗ is represented by some q∗ typable as:

x1 : N[1], x2 : !N[2], . . . , xdeg(p∗)−1 : !deg(q
∗)−1N[deg(q∗)] ⊢ q∗ : N

By repeatedly applying downkN for appropriate k we obtain a term M such that:

x1 : N[2], x2 : !N[3], . . . , xdeg(p∗)−1 : !deg(q
∗)−1N[deg(q∗) + 1] ⊢ M : N

We set p∗ := add a0 (multM x0), which is typable as:

x0 : N[1], x1 : !N[2], x2 : !2N[3], . . . , xdeg(p∗)−1 : !deg(q
∗)N[deg(q∗) + 1] ⊢ p∗ : N

and we can conclude since deg(q∗) = deg(p∗)− 1.

Now, to prove the theorem it suffices to repeatedly apply downkN for appropriate
k to the typable term in Equation (5) in order to get a term N that represents p∗

and typable as

x0 : N[deg(p∗)], x1 : !N[deg(p∗)], . . . , xdeg(p∗)−1 : !deg(p
∗)−1N[deg(p∗)] ⊢ p∗ : N

By applying a series of ?b we obtain a term p representing the polynomial p and

such that x : !deg(p)−1N[deg(p)] ⊢ p : N. □

Definition 74 (Streams of booleans). The type of streams of booleans is Stream :=
ωB. A stream of booleans α is encoded by a term M such that M(i) := α(i). We
write α for the encoding of α.

6.5. Encoding polytime Turing machines with polynomial advice in nuPTA2.
We define the configuration of a Turing machine (with advice) by terms of the form:

(6) λc.(cbl0 ◦ . . . ◦ cbln)⊗ (cbr0 ◦ . . . ◦ cblm)⊗Q⊗ α

where cbl0 ◦ . . . ◦ cbln and cbr0 ◦ . . . ◦ cbrm represent respectively the left and th right
part of the tape, and Q := b1 ⊗ . . .⊗ bk represents a tuple of booleans encoding the
current state of the machine. We assume w.l.o.g. that the left part of the tape is
represented in a reverse order, that the alphabet is composed by the two symbols
1 and 0, that the scanned symbol is br0 in the right part, and that final states are
divided into accepting and rejecting.

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS33

Terms as in Equation (6) have the following type:

TM := ∀X.!(B ⊸ X ⊸ X) ⊸ ((X ⊸ X)2 ⊗Bk ⊗ Stream)

The initial configuration of a Turing machine is represented by a tape of fixed length
filled by 0s with the head at the beginning of the tape and in the initial state Q0.

The initial configuration of a Turing machine can be obtained starting from a
numeral representing the length of the tape. In particular, it takes a numeral n and
gives as output a Turing machine with tape of length n filled by 0s in the initial
state Q0 and with the head at the beginning of the tape.

init := λn.λc.(λz.z)⊗ (λz.n(c0)z)⊗Q0 ⊗ α : N[d] ⊸ Stream ⊸ TM

for any d ≥ 0. Following [30, 31], in order to show that Turing machine transitions
are definable we consider two distinct phases. In the first one the Turing configu-
ration is decomposed to extract the first symbol of each part of the tape. In the
second phase the symbols obtained in the previous one are combined, depending on
the transition function, to reconstruct the tape after the transition step. In order
to type the decomposition of a Turing machine configuration we will use the type
ID defined as:

ID := ∀X.!(B ⊸ X ⊸ X) ⊸ ((X ⊸ X)2⊗(B ⊸ X ⊸ X)⊗B⊗(B ⊸ X ⊸ X)⊗Bk⊗Stream)

The decomposition phase is described by the term dec of type TM ⊸ ID defined
as follows:

(7) dec := λm.λc.let l ⊗ r ⊗ q ⊗ α = m (F [c]) in

(let sl ⊗ cl ⊗ bl0 = l(I⊗ (λx.let I = WB x in I)⊗ 0) in

(let sr ⊗ cr ⊗ br0 = r(I⊗ (λx.let I = WB x in I)⊗ 0) in

sl ⊗ sr ⊗ cl ⊗⊗bl0 ⊗ cr ⊗ br0 ⊗ q ⊗ α))

where F [x] := λb.λz.let g ⊗ h⊗ i = z in (h i ◦ g)⊗ x⊗ b, which is typable as:

x : B ⊸ X ⊸ X ⊢ F [x] : B ⊸ ((X ⊸ X)⊗(B ⊸ X ⊸ X)⊗B) ⊸ ((X ⊸ X)⊗(B ⊸ X ⊸ X)⊗B)

Notice that in dec the variable m has type TM and is applied to the term F [c].
This requires to apply to the variable m the rule ∀e, instantiating the type variable
X with the !-free type ((X ⊸ X)⊗ (B ⊸ X ⊸ X)⊗B).

The term dec in Equation (7) satisfies the following reduction:

dec(λc.(cbl0 ◦ . . . ◦ cbln)⊗ (cbr0 ◦ . . . ◦ cblm)⊗Q⊗ α)

→∗
β

λc.(cbl1 ◦ . . . ◦ cbln)⊗ (cbr1 ◦ . . . ◦ cblm)⊗ c⊗ bl0 ⊗ c⊗ br0 ⊗Q⊗ α

Analogously, the combining phase is described by the term comp of type ID ⊸
TM defined as follows:

(8) comp := λs.λc.let l ⊗ r ⊗ cl ⊗ bl ⊗ cr ⊗ br ⊗ q ⊗ α = s c in

let h⊗ t = popα in (let b′ ⊗ q′ ⊗m = δ(br ⊗ h⊗ q) in

((ifm thenR elseL)b′q′(l ⊗ r ⊗ cl ⊗ bl ⊗ cr)⊗ t)

where:

R := λb′.λq′.λs.let l ⊗ r ⊗ cl ⊗ bl ⊗ cr = s in (crb
′ ◦ clbl ◦ l)⊗ r ⊗ q′

L := λb′.λq′.λs.let l ⊗ r ⊗ cl ⊗ bl ⊗ cr = s in l ⊗ (clbl ◦ crb′ ◦ r)⊗ q′

34NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

Notice that in comp the variable m has type B and is applied to the terms R and L.
This requires to apply to the variable m the rule ∀e instantiating the type variable
X with the !-free type B ⊸ Bk ⊸ ((X ⊸ X)2 ⊗ (B ⊸ X ⊸ X) ⊗ B ⊗ (B ⊸
X ⊸ X)) ⊸ (X ⊸ X)2 ⊗Bk.

The term comp in Equation (8) satisfies the following reduction:

comp(λc.(cbl1 ◦ . . . ◦ cbln)⊗ (cbr1 ◦ . . . ◦ cblm)⊗ c⊗ bl0 ⊗ c⊗ br0 ⊗Q⊗ α)

→∗
β

λc.(cb′ ◦ cbl0 ◦ . . . ◦ cbln)⊗ (cbr1 ◦ . . . ◦ cblm)⊗Q′ ⊗ tl(α)

if δ(br0, hd(α), Q) = (b′, Q′,Right), and the following reduction:

comp(λc.(cbl1 ◦ . . . ◦ cbln)⊗ (cbr1 ◦ . . . ◦ cblm)⊗ c⊗ bl0 ⊗ c⊗ br0 ⊗Q⊗ α)

→∗
β

λc.(cbl1 ◦ . . . ◦ cbln)⊗ (cbl0 ◦ cb′ ◦ cbr1 ◦ . . . ◦ cblm)⊗Q′ ⊗ tl(α)

if δ(br0, hd(α), Q) = (b′, Q′,Left), where δ is the transition function of the Turing
machine, which takes as an extra input the first bit of the current advice stack, i.e.,
the head of the stream α.

By combining the above terms we obtain the encoding of the Turing machine
transition step, Tr := comp ◦ dec, with type TM ⊸ TM.

We now need a term that encode the initialisation of a Turing machine with an
input string. This is given by the term In of type S[TM] ⊸ TM ⊸ TM defined
as follows:

In := λs.λm.s(λb.(Tb) ◦ dec)m
where:

T := λb.λs.λc.let l ⊗ r ⊗ cl ⊗ bl ⊗ cr ⊗ br ⊗ q ⊗ α = sc in

(let I = WB br in (Rbq(l ⊗ r ⊗ cl ⊗ bl ⊗ cr))⊗ α)

R := λb′.λq′.λs.let l ⊗ r ⊗ cl ⊗ bl ⊗ cr = s in ((crb
′ ◦ clbl ◦ l)⊗ r ⊗ q′)

The term In defines a function that, when supplied by a boolean string and a Turing
machine, writes the input string on the tape of the Turing machine,

Finally, we need a term that extracts the output string from the final configura-
tion. This is given by the term Ext of type TM ⊸ S, defined as follows:

Ext := λs.λc.let l ⊗ r ⊗ q ⊗ α = sc in let I = WBk+1 (q ⊗ (discard(popα))) in l ◦ r

where WBk+1 is the eraser for Bk+1 given by Proposition 66.
We can now prove our fundamental theorem:

Theorem 75 (Completeness). Let f : ({0,1}∗)n → {0,1}∗:
(1) If f ∈ FP/poly then f is representable in nuPTA2;
(2) If f ∈ FP then f is representable in PTA2.

Proof. We only show the case where f is unary for the sake of simplicity. Let us
prove point Item 1. Let f ∈ FP/poly. By Proposition 6 we have f ∈ FP(R), so
there is a polynomial Turing machine that can make polynomially many queries to
bits of a boolean stream α. Let p(x) and q(x) be polynomials bounding the time

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS35

and space of the Turing machine respectively, with deg(p) = m and deg(q) = l.
By Theorem 73 we obtain p and q typable as:

y : !m−1N[m+ 1] ⊢ p : N[1]
z : !l−1N[l + 1] ⊢ q : N[1]

where N[1] = N[TM], and hence:

s′ : !m−1S[m+ 1] ⊢ p[length s′/y] : N[1]
s′′ : !l−1S[l + 1] ⊢ q[length s′′/z] : N[1]

On the other hand, we have:

t : S[1], p : N[1], q : N[1] ⊢ Ext((pTr)(In t (init q α))) : S

Let M ′ := Ext(((p[length s′/y])Tr)(In t (init (q[length s′′/z])α))). By putting every-
thing together we have:

s′ : !m−1S[m+ 1], s′′ : !l−1S[l + 1], t : S[1] ⊢ M ′ : S

By repeatedly applying ?b and downkS for appropriate k we obtain a term M rep-
resenting f such that:

s : !max(m,l)S[max(m, l) + 1] ⊢ M : S

By applying down1S we obtain x : S[!max(m,l)S[max(m, l) + 1]] ⊢ M [down1S x/s] : S.
We set f := M [down1S x/s], so that x : S[] ⊢ f : S.

Point Item 2 is obtained by stripping away the type of streams from the above
encoding. □

The following remarks justify the finiteness condition (⋆) in nuPTA2 and the
restriction of second order instantiation to (!, ω)-free types.

Remark 76. If the condition (⋆) were dropped then nuPTA2 would represent any
function on natural numbers. Indeed, given a function f : N → N, we can define the
term F := f(0) :: f(1) :: . . . with type ω!N and encoding all values of the function

f . We set A := N[1]⊗ ωN[1] and define:

step := λx.let y1 ⊗ y2 = x in let I = y1 (λz.z) I in pop y2 : A ⊸ A
f := λn.discard (n step (pop F)) : N[A] ⊸ N[1]

It is easy to check that, for any n ∈ N, f →∗
β f(n).

The above observation can be extended to the proof systems nuPLL2 without
the condition (⋆) (and, hence, to the proof system pPLL∞2) by adapting the above
proof.

Remark 77. If the (!, ω)-freeness condition on ∀e were dropped then nuPTA2 could
represent exponential functions. Indeed, we can define the following functions:

plustwo := λn.λf.λz.nf(f(fz)) : N[] ⊸ N[]
double := λn.n (plustwo) 0 : N[N[]] ⊸ N[]

exp := λn.n (double) 1 : N[N[]] ⊸ N[]

It is easy to check that, for any n ∈ N:

plustwo n →∗
β n+ 2 double n →∗

β 2n exp n →∗
β 2n

36NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

6.6. Translating type systems into proof systems.

Definition 78 (Translation). We define a translation ()† : nuPTA2 → nuPLL2
mapping typing derivations of nuPTA2 to derivations of nuPLL2 (and, in particular,
typing derivations of PTA2 to derivations of PLL2) as follows:

• It maps types of nuPTA2 to formulas of nuPLL2:

X† := X
1† := 1

(σ ⊸ A)† := σ† ⊸ A†

(∀X.A)† := ∀X.A†

(σ ⊗ τ)† := σ† ⊗ τ †

(!σ)† := !σ†

(ωσ)† := !σ†

we notice that σ†[τ †/X] = (σ[τ/X])†.

• It maps judgements Γ ⊢ M : τ to sequents Γ†⊥, τ †, where if Γ = x1 :

σ1, . . . , xn : σn then Γ† = σ†
1, . . . , σ

†
n.

• It maps a typing rule to gadgets as in Section 6.6 and Section 6.6.

The following two lemmas represent stronger versions of Lemma 60 and Propo-
sition 61 respectively.

Lemma 79. For any D1 : Γ ⊢ M : σ and D2 : ∆ ⊢ N : τ there is S(D1,D2) such
that:

(
D1

∆ ⊢ N : τ

)† (
D2

Γ, x : τ ⊢ M : σ

)†

cut

Γ†⊥,∆†⊥, σ†

→∗
cut

 S(D1,D2)

Γ,∆ ⊢ M [N/x] : σ


†

Proof. It suffices to check that the derivation S(D1,D2) inductively defined can be
stepwise computed by the cut-elimination rules. □

Lemma 80. Let D1 : Γ ⊢ M1 : σ in nuPTA2. If M1 →β M2 then there exist a

typing derivation D2 : Γ ⊢ M2 : σ such that D†
1 →∗

cut D
†
2.

Proof. It suffices to check the statement for the reduction rules in Definition 57, by
inspecting the cut-elimination rules in Figure 9. We consider the most important
cases. If M1 = popM and M2 = hd(M)⊗ tl(M), then w.l.o.g. D1 has the following
shape:

pop
⊢ pop : σ ⊸ σ ⊗ ωσ

⊢ M(0) : σ ⊢ M(1) : σ . . . ⊢ M(n) : σ . . .
stream

⊢ M : ωσ
⊸e

⊢ popM : ωσ ⊗ ωσ

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS37

ax
x : A ⊢ x : A

7→ ax

A⊥, A

Γ, x : σ ⊢ M : B
⊸i

Γ ⊢ λx.M : σ ⊸ B
7→

Γ†⊥, σ†⊥, B†

`
Γ†⊥, σ† ⊸ B†

Γ ⊢ M : σ ⊸ B ∆ ⊢ N : σ
⊸e

Γ,∆ ⊢ MN : B
7→

Γ†⊥, (σ ⊸ B)†

∆†⊥, A†
ax

B†⊥, B†

⊗
∆†⊥, A† ⊗B†⊥, B†

cut

Γ†⊥,∆†⊥, B†

Ii
⊢ I : 1

7→ 1
1

Γ ⊢ N : 1 ∆ ⊢ M : σ
Ie
Γ,∆ ⊢ let I = N in M : σ

7→ Γ†⊥,1†

∆†⊥, σ†

⊥
⊥,∆†⊥, σ†

cut

Γ†⊥,∆†⊥, σ†

Γ ⊢ M : σ ∆ ⊢ N : τ
⊗i

Γ,∆ ⊢ M ⊗N : σ ⊗ τ
7→

Γ†⊥, σ† ∆†⊥, τ †

⊗
Γ†⊥,∆†⊥, σ† ⊗ τ†

Γ ⊢ M ⊗N : σ ⊗ τ ∆, x : σ, y : τ ⊢ P : C
⊗e

Γ,∆ ⊢ let x⊗ y = M ⊗N in P : C
7→ Γ†⊥, (σ ⊗ τ)†

∆†⊥, σ†⊥, τ †⊥, C†

`
∆†⊥, σ†⊥ ` τ†⊥, C†

cut

Γ†⊥,∆†⊥, C†

Γ ⊢ M : A
∀i

Γ ⊢ M : ∀X.A
7→

Γ†⊥, A†

∀
Γ†⊥,∀X.A†

Γ ⊢ M : ∀X.A
∀e

Γ ⊢ M : A[B/X]
7→

Γ†⊥, (∀X.A)†

ax

A†⊥[B†/X], A†[B†/X]
∃

∃X.A†⊥, A†[B†/X]
cut

Γ†⊥, A†[B†/X]

Γ ⊢ M : σ
f!p

!Γ ⊢ M : !σ
7→

Γ†⊥, σ†

f!p

!Γ†⊥, !σ†

Γ ⊢ M : τ
?w

Γ, x : !σ ⊢ M : τ
7→

Γ†⊥, τ †

?w

Γ†⊥, ?σ†⊥, τ †

Γ, y : σ, z : !σ ⊢ M : τ
?b
Γ, x : !σ ⊢ M [x/y, x/z] : τ

7→
Γ†⊥, σ†⊥, ?σ†⊥, τ †

?b

Γ†⊥, ?σ†⊥, τ †

Figure 17. Translation from PTA2 to PLL2.

38NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

⊢ M(0) : σ ⊢ M(1) : σ . . . ⊢ M(n) : σ . . .
stream

⊢ M : ωσ
7→

σ† σ† . . . σ† . . .
stream

!σ†

discard
⊢ discard : σ ⊗ ωσ ⊸ σ

7→

ax

σ†⊥, σ†

?w

σ†⊥, ?σ†⊥, σ†

`
σ†⊥ ` ?σ†⊥, σ†

pop
⊢ pop : ωσ ⊸ σ ⊗ ωσ

7→
ax

σ†⊥, σ†

ax

σ†⊥, σ†

f!p

?σ†⊥, !σ†

⊗
σ†⊥, ?σ†⊥, σ† ⊗ !σ†

?w

?σ†⊥, σ† ⊗ !σ†

Figure 18. Translation from nuPTA2 to nuPLL2.

We set D2 as the following typing derivation:

...

⊢ M(0) : σ

⊢ M(1) : σ ⊢ M(2) : σ . . . ⊢ M(n+ 1) : σ . . .
stream

⊢ tl(M) : ωσ
⊗

⊢ M(0)⊗ tl(M) : σ ⊗ ωσ

It is easy to check that D†
1 →∗

cut D
†
2.

Let M1 = (λx.P)N and M2 = P [N/x]. The proof is by induction on D1. We
only show the case where the last rule of D1 is ⊸e, i.e., we have

D′
1

Σ, x : σ ⊢ P ′ : B
⊸i

Σ ⊢ λx.P ′ : σ ⊸ B
?b,?w

Γ ⊢ λx.P : σ ⊸ B

D′′
1

∆ ⊢ N : σ
⊸e

Γ,∆ ⊢ (λx.P)N : B

By Lemma 79 there is S(D′
1,D′′

1) such that:

(9)

(
D′′

1

∆ ⊢ N : σ

)† (
D′

1

Σ, x : σ ⊢ P ′ : B

)†

cut

Σ†⊥,∆†⊥, B†
?b,?w

Γ†⊥,∆†⊥, B†

→∗
cut

 S(D′
1,D

′′
1)

Σ,∆ ⊢ P ′[N/x] : B


†

?b,?w

Γ†⊥,∆†⊥, B†

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS39

We set D2 = S(D′
1,D′′

2). We notice that D†
1 is as follows:

(D′
1)

†

Γ†⊥, σ†⊥, B†
`
Γ†⊥, σ†⊥ `B†

(D′′
1)†

∆†⊥, σ†
ax

B†⊥, B†
⊗

∆†⊥, σ† ⊗B†⊥, B†
cut

Γ†⊥,∆†⊥, B†

By Equation (9) we can conclude that D†
1 →∗

cut D
†
2. □

Theorem 81. Let f : ({0,1}∗)n → {0,1}∗:
(1) If f is representable in nuPTA2 then it is also representable in nuPLL2;
(2) If f is representable in PTA2 then it is also representable in PLL2.

Proof. We only show the case where f is unary for the sake of simplicity. Let f be
a typable term of nuPTA2 representing f , so that f s →∗

β f(s) for any s ∈ {0, 1}∗.
Moreover, let Df and Ds be such that

D =

Df

⊢ f : S[] ⊸ S[]

Ds

⊢ s : S[]
⊸e

⊢ f s : S[]

By repeatedly applying Lemma 80 there is Df(s) such that

D† =
D†

f

S[] ⊸ S[]

D†
s

S[]
ax

S[]
⊥
,S[]

⊗
S[]⊗ S[]

⊥
,S[]

cut
S[]

→∗
cut D†

f(s)

S[]

in nuPLL2, where we can safely assume that D†
s →∗

cut s and D†
f(s) →∗

cut f(s) in

nuPLL2. This means that D†
f represents f in nuPLL2. If moreover f is typable term

of PTA2 then D†
f represents f in PLL2.e

□

7. Conclusion and future work

This paper builds on a series of recent works aimed at developing the topic
of Cyclic Implicit Complexity, i.e., implicit computational complexity in the set-
ting of circular and non-wellfounded proof theory [17, 19]. We presented the non-
wellfounded proof systems wrPLL∞2 and rPLL∞2 inspired by Mazza’s parsimonious
logic [26, 27], and prove that they characterise the complexity classes FP/poly
and FP respectively. We investigated infinitary cut-elimination for these non-
wellfiunded proof systems, and we defined a semantics based on the relational
model.

For future research, we envisage extending the contributions of this paper in
many directions.

• Proof systems based on linear logic and implementing polytime computa-
tion over actual binary streams have been considered, e.g., in [42], which

40NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

provide an ICC-like characterisation of Ko’s class of polynomial time com-
putable functions over real numbers [43]. As a research direction, we plan
to capture Ko’s class in our non-wellfounded setting. This requires to in-
troduce the co-aborption rule to model the “pop” operation on streams.
Computation over real numbers will be implemented in our systems by
exploiting our continuous cut-elimination theorem (??).

• Another direction is to explore applications of the contributions of this
paper to probabilistic complexity. In particular, we aim to study frag-
ments of wrPLL∞2 modelling the class BPP (bounded-error probabilistic
polynomial time), essentially by leveraging on well-known derandomisation
methods showing the inclusion of BPP in FP/poly, and hence in FP(R)
(see Proposition 6). A challenging aspect of this task is to obtain character-
isation results that are entirely in the style of ICC, since BPP is defined by
explicit (error) bounds, as observed in [44]. We suspect that wrPLL∞2 repre-
sents the right framework for investigating fully implicit characterisations of
this class, where additional proof-theoretic conditions can be introduced to
restrict computationally the access to oracles and, consequently, to model
bounded-error probabilistic computation.

• Finally, we plan to study computational counterparts to the non-welllfounded
proof systems wrPLL∞2 and rPLL∞2 based on infinitary (typed) lambda cal-
culi, along the lines of Mazza’s work on infinitary affine lambda calculus [45].

Acknowledgements. We would like to thank Anupam Das, Abhishek De, Farzad
Jafar-Rahmani, Alexis Saurin, Tito (Lê Thành Dung Nguyên) and Damiano Mazza
for their useful comments and suggestions.

References

[1] D. Niwiński and I. Walukiewicz, “Games for the µ-calculus,” Theoretical Computer Science,

vol. 163, no. 1-2, pp. 99–116, 1996.
[2] C. Dax, M. Hofmann, and M. Lange, “A proof system for the linear time µ-calculus,” in

International Conference on Foundations of Software Technology and Theoretical Computer

Science. Springer, 2006, pp. 273–284.
[3] J. Brotherston and A. Simpson, “Sequent calculi for induction and infinite descent,” Journal

of Logic and Computation, vol. 21, no. 6, pp. 1177–1216, 2011.

[4] S. Berardi and M. Tatsuta, “Classical system of Martin-Lof’s inductive definitions is not
equivalent to cyclic proofs,” Log. Methods Comput. Sci., vol. 15, no. 3, 2019. [Online].
Available: https://doi.org/10.23638/LMCS-15(3:10)2019

[5] A. Das and D. Pous, “A cut-free cyclic proof system for Kleene algebra,” in International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods. Springer,

2017, pp. 261–277.

[6] ——, “Non-Wellfounded Proof Theory For (Kleene+Action)(Algebras+Lattices),” in 27th
EACSL Annual Conference on Computer Science Logic (CSL 2018), ser. Leibniz
International Proceedings in Informatics (LIPIcs), D. Ghica and A. Jung, Eds., vol.
119. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, pp.
19:1–19:18. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2018/9686

[7] A. Simpson, “Cyclic arithmetic is equivalent to peano arithmetic,” in Foundations of
Software Science and Computation Structures - 20th International Conference, FOSSACS

2017, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, ser. Lecture Notes in
Computer Science, J. Esparza and A. S. Murawski, Eds., vol. 10203, 2017, pp. 283–300.
[Online]. Available: https://doi.org/10.1007/978-3-662-54458-7 17

[8] S. Berardi and M. Tatsuta, “Equivalence of inductive definitions and cyclic proofs under
arithmetic,” in 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS

https://doi.org/10.23638/LMCS-15(3:10)2019
http://drops.dagstuhl.de/opus/volltexte/2018/9686
https://doi.org/10.1007/978-3-662-54458-7_17

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS41

2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer Society, 2017, pp. 1–12.

[Online]. Available: https://doi.org/10.1109/LICS.2017.8005114

[9] A. Das, “On the logical complexity of cyclic arithmetic,” Log. Methods Comput. Sci.,
vol. 16, no. 1, 2020. [Online]. Available: https://doi.org/10.23638/LMCS-16(1:1)2020

[10] D. Baelde, A. Doumane, and A. Saurin, “Infinitary proof theory: the multiplicative additive

case,” vol. 62, pp. 42:1–42:17, 2016. [Online]. Available: https://doi.org/10.4230/LIPIcs.
CSL.2016.42

[11] A. De and A. Saurin, “Infinets: The parallel syntax for non-wellfounded proof-theory,”

in Automated Reasoning with Analytic Tableaux and Related Methods - 28th International
Conference, TABLEAUX 2019, London, UK, September 3-5, 2019, Proceedings, ser. Lecture

Notes in Computer Science, S. Cerrito and A. Popescu, Eds., vol. 11714. Springer, 2019,

pp. 297–316. [Online]. Available: https://doi.org/10.1007/978-3-030-29026-9 17

[12] A. Das, “A circular version of Gödel’s T and its abstraction complexity,” CoRR, vol.

abs/2012.14421, 2020. [Online]. Available: https://arxiv.org/abs/2012.14421
[13] D. Kuperberg, L. Pinault, and D. Pous, “Cyclic proofs, system T, and the power of

contraction,” Proc. ACM Program. Lang., vol. 5, no. POPL, pp. 1–28, 2021. [Online].

Available: https://doi.org/10.1145/3434282
[14] A. Das, “On the logical strength of confluence and normalisation for cyclic proofs,”

in 6th International Conference on Formal Structures for Computation and Deduction,

FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual Conference), ser. LIPIcs,
N. Kobayashi, Ed., vol. 195. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp.

29:1–29:23. [Online]. Available: https://doi.org/10.4230/LIPIcs.FSCD.2021.29

[15] G. E. Mints, “Finite investigations of transfinite derivations,” Journal of Soviet Mathematics,
vol. 10, no. 4, pp. 548–596, 1978.

[16] J. Fortier and L. Santocanale, “Cuts for circular proofs: semantics and cut-elimination,” in

Computer Science Logic 2013 (CSL 2013). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2013.

[17] G. Curzi and A. Das, “Cyclic implicit complexity,” in Proceedings of the 37th
Annual ACM/IEEE Symposium on Logic in Computer Science, ser. LICS ’22. New

York, NY, USA: Association for Computing Machinery, 2022. [Online]. Available:

https://doi.org/10.1145/3531130.3533340
[18] S. Bellantoni and S. Cook, “A new recursion-theoretic characterization of the polytime

functions (extended abstract),” in Proceedings of the Twenty-Fourth Annual ACM Symposium

on Theory of Computing, ser. STOC ’92. New York, NY, USA: Association for Computing
Machinery, 1992, p. 283–293. [Online]. Available: https://doi.org/10.1145/129712.129740

[19] G. Curzi and A. Das, “Non-uniform complexity via non-wellfounded proofs,” in 31st

EACSL Annual Conference on Computer Science Logic, CSL 2023, February 13-16,
2023, Warsaw, Poland, ser. LIPIcs, B. Klin and E. Pimentel, Eds., vol. 252. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2023, pp. 16:1–16:18. [Online]. Available:

https://doi.org/10.4230/LIPIcs.CSL.2023.16
[20] S. Arora and B. Barak, Computational Complexity: A Modern Approach. Cambridge Uni-

versity Press, 2009.
[21] J.-Y. Girard, “Light linear logic,” Information and Computation, vol. 143, no. 2,

pp. 175–204, 1998. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0890540198927006

[22]

[23] Y. Lafont, “Soft linear logic and polynomial time,” Theor. Comput. Sci., vol. 318, no. 1-2,

pp. 163–180, 2004. [Online]. Available: https://doi.org/10.1016/j.tcs.2003.10.018
[24] V. Danos and J. Joinet, “and elementary time,” Inf. Comput., vol. 183, no. 1, pp. 123–137,

2003. [Online]. Available: https://doi.org/10.1016/S0890-5401(03)00010-5
[25] P. Baillot, “On the expressivity of elementary linear logic: Characterizing ptime and an

exponential time hierarchy,” Inf. Comput., vol. 241, pp. 3–31, 2015. [Online]. Available:

https://doi.org/10.1016/j.ic.2014.10.005

[26] D. Mazza, “Simple parsimonious types and logarithmic space,” in 24th EACSL Annual
Conference on Computer Science Logic, CSL 2015, September 7-10, 2015, Berlin, Germany,

ser. LIPIcs, S. Kreutzer, Ed., vol. 41. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2015, pp. 24–40. [Online]. Available: https://doi.org/10.4230/LIPIcs.CSL.2015.24

https://doi.org/10.1109/LICS.2017.8005114
https://doi.org/10.23638/LMCS-16(1:1)2020
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.1007/978-3-030-29026-9_17
https://arxiv.org/abs/2012.14421
https://doi.org/10.1145/3434282
https://doi.org/10.4230/LIPIcs.FSCD.2021.29
https://doi.org/10.1145/3531130.3533340
https://doi.org/10.1145/129712.129740
https://doi.org/10.4230/LIPIcs.CSL.2023.16
https://www.sciencedirect.com/science/article/pii/S0890540198927006
https://www.sciencedirect.com/science/article/pii/S0890540198927006
https://doi.org/10.1016/j.tcs.2003.10.018
https://doi.org/10.1016/S0890-5401(03)00010-5
https://doi.org/10.1016/j.ic.2014.10.005
https://doi.org/10.4230/LIPIcs.CSL.2015.24

42NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS

[27] D. Mazza and K. Terui, “Parsimonious types and non-uniform computation,” in Automata,

Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan,

July 6-10, 2015, Proceedings, Part II, ser. Lecture Notes in Computer Science, M. M.
Halldórsson, K. Iwama, N. Kobayashi, and B. Speckmann, Eds., vol. 9135. Springer, 2015,

pp. 350–361. [Online]. Available: https://doi.org/10.1007/978-3-662-47666-6 28

[28] D. Baelde and D. Miller, “Least and greatest fixed points in linear logic,” in Logic for
Programming, Artificial Intelligence, and Reasoning, 14th International Conference, LPAR

2007, Yerevan, Armenia, October 15-19, 2007, Proceedings, ser. Lecture Notes in Computer

Science, N. Dershowitz and A. Voronkov, Eds., vol. 4790. Springer, 2007, pp. 92–106.
[Online]. Available: https://doi.org/10.1007/978-3-540-75560-9 9

[29] T. Ehrhard and F. Jafar-Rahmani, “On the denotational semantics of linear logic with least

and greatest fixed points of formulas,” CoRR, vol. abs/1906.05593, 2019. [Online]. Available:
http://arxiv.org/abs/1906.05593

[30] H. G. Mairson and K. Terui, “On the computational complexity of cut-elimination in linear
logic,” in Italian Conference on Theoretical Computer Science, 2003.

[31] M. Gaboardi and S. Ronchi Della Rocca, “From light logics to type assignments: A case

study,” Logic Journal of the IGPL, vol. 17, 09 2009.
[32] A. S. Troelstra and H. Schwichtenberg, Basic Proof Theory, 2nd ed., ser. Cambridge Tracts

in Theoretical Computer Science. Cambridge University Press, 2000.

[33] D. Baelde, A. Doumane, and A. Saurin, “Infinitary proof theory: the multiplicative additive
case,” in 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, August

29 - September 1, 2016, Marseille, France, ser. LIPIcs, J. Talbot and L. Regnier, Eds.,

vol. 62. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016, pp. 42:1–42:17. [Online].
Available: https://doi.org/10.4230/LIPIcs.CSL.2016.42

[34] M. Pagani and L. Tortora de Falco, “Strong normalization property for second order linear

logic,” Theor. Comput. Sci., vol. 411, no. 2, p. 410–444, jan 2010. [Online]. Available:
https://doi.org/10.1016/j.tcs.2009.07.053

[35] M. Acclavio, G. Curzi, and G. Guerrieri, “Infinitary cut-elimination via finite approxima-
tions,” 2023.

[36] Y. Lafont, “Soft linear logic and polynomial time,” Theoretical Computer Science, vol. 318,

no. 1, pp. 163–180, 2004, implicit Computational Complexity.
[37] L. Roversi and L. Vercelli, “Safe recursion on notation into a light logic by levels,” in

Proceedings International Workshop on Developments in Implicit Computational complExity,

DICE 2010, Paphos, Cyprus, 27-28th March 2010, ser. EPTCS, P. Baillot, Ed., vol. 23,
2010, pp. 63–77. [Online]. Available: https://doi.org/10.4204/EPTCS.23.5

[38] G. Curzi and A. Das, “Cyclic implicit complexity,” in LICS ’22: 37th Annual

ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5,
2022, C. Baier and D. Fisman, Eds. ACM, 2022, pp. 19:1–19:13. [Online]. Available:

https://doi.org/10.1145/3531130.3533340

[39] T. Ehrhard, F. Jafarrahmani, and A. Saurin, “On relation between totality semantic
and syntactic validity,” in 5th International Workshop on Trends in Linear Logic

and Applications (TLLA 2021), Rome (virtual), Italy, Jun. 2021. [Online]. Available:
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271408

[40] T. Ehrhard, “An introduction to differential linear logic: proof-nets, models and antideriva-
tives,” 2016.

[41] H. P. Barendregt, The Lambda Calculus: Its Syntax and Semantics. New York, N.Y.: Sole

distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., 1981.

[42] E. Hainry, D. Mazza, and R. Péchoux, “Polynomial time over the reals with parsimony,”
in Functional and Logic Programming - 15th International Symposium, FLOPS 2020,

Akita, Japan, September 14-16, 2020, Proceedings, ser. Lecture Notes in Computer Science,
K. Nakano and K. Sagonas, Eds., vol. 12073. Springer, 2020, pp. 50–65. [Online]. Available:
https://doi.org/10.1007/978-3-030-59025-3 4

[43] K.-I. Ko, Complexity Theory of Real Functions. USA: Birkhauser Boston Inc., 1991.
[44] U. D. Lago and P. P. Toldin, “A higher-order characterization of probabilistic

polynomial time,” Inf. Comput., vol. 241, pp. 114–141, 2015. [Online]. Available:

https://doi.org/10.1016/j.ic.2014.10.009
[45] D. Mazza, “Non-uniform polytime computation in the infinitary affine lambda-

calculus,” in Automata, Languages, and Programming - 41st International Colloquium,

https://doi.org/10.1007/978-3-662-47666-6_28
https://doi.org/10.1007/978-3-540-75560-9_9
http://arxiv.org/abs/1906.05593
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.1016/j.tcs.2009.07.053
https://doi.org/10.4204/EPTCS.23.5
https://doi.org/10.1145/3531130.3533340
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271408
https://doi.org/10.1007/978-3-030-59025-3_4
https://doi.org/10.1016/j.ic.2014.10.009

NON-UNIFORM POLYNOMIAL TIME AND NON-WELLFOUNDED PARSIMONIOUS PROOFS43

ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, ser.

Lecture Notes in Computer Science, J. Esparza, P. Fraigniaud, T. Husfeldt, and

E. Koutsoupias, Eds., vol. 8573. Springer, 2014, pp. 305–317. [Online]. Available:
https://doi.org/10.1007/978-3-662-43951-7 26

https://doi.org/10.1007/978-3-662-43951-7_26

	1. Introduction
	Contributions
	Outline of the paper

	2. Preliminary notions
	2.1. Derivations and coderivations
	2.2. Non-uniform complexity classes
	2.3. An equivalent definition of FP/poly

	3. Second-order Parsimonious Linear Logic
	4. Non-wellfounded Parsimonious Linear Logic
	4.1. From infinitely branching proofs to non-wellfounded proofs
	4.2. Consistency via a progressing condition
	4.3. Recovering (weak forms of) regularity
	4.4. Simulation results
	4.5. Approximating coderivations

	5. Relational semantics for non-wellfounded proofs
	6. Characterisation results
	6.1. Soundness
	6.2. Completeness
	6.3. The type assigment systems PTA2 and nuPTA2
	6.4. Definability and basic data types in PTA2 and nuPTA2
	6.5. Encoding polytime Turing machines with polynomial advice in nuPTA2
	6.6. Translating type systems into proof systems

	7. Conclusion and future work
	Acknowledgements

	References

